Skip to main content

Knowledge Integration and Diffusion: Measures and Mapping of Diversity and Coherence

  • Chapter
  • First Online:
Book cover Measuring Scholarly Impact

Abstract

In this chapter, I present a framework based on the concepts of diversity and coherence for the analysis of knowledge integration and diffusion. Visualisations that help to understand insights gained are also introduced. The key novelty offered by this framework compared to previous approaches is the inclusion of cognitive distance (or proximity) between the categories that characterise the body of knowledge under study. I briefly discuss different methods to map the cognitive dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that the evolutionary view of science and technology is prevalent both among constructivist sociologists such as Bijker (Pinch & Bijker, 1984) and positivist economists such as Dosi (1982).

  2. 2.

    The use of these five dimensions is an expedient simplification. One may easily conceive more dimensions within each of the dimensions listed, making a more fine-grained description of cognitive or social dimensions, for example.

  3. 3.

    To my knowledge, coherence had only been introduced in this single form, with intensity defined as the proportion of citations between WoS categories i ij  = p ij . The form of coherence I adopt in this chapter follows from Soós and Kampis (2012) rather than Rafols, Leydesdorff et al. (2012). In the latter, coherence, i.e. \( {\displaystyle \sum_{i,j\left(i\ne j\right)}{p}_{ij}}{d}_{ij} \) was normalised (divided) by Rao-Stirling diversity, i.e. \( {\displaystyle \sum_{i,j\left(i\ne j\right)}{p}_i{p}_j{d}_{ij}} \). Such normalisation was useful to remove the correlation between the two variables, but it seems unnecessarily complicated for a general framework.

  4. 4.

    This classification and underlying map can be downloaded and publicly used. It is available at http://sci.cns.iu.edu/ucsdmap/.

  5. 5.

    This classification is available at http://www.ludowaltman.nl/classification_system/.

  6. 6.

    According to Boyack, Klavans, Small and Ungar (2014), more than 99 % of clusters are stable at a level of aggregation of about 500 clusters for all science.

  7. 7.

    http://www.thevantagepoint.com/.

References

  • Ahlgren, P., Persson, O., & Tijssen, R. (2013). Geographical distance in bibliometric relations within epistemic communities. Scientometrics, 95(2), 771–784.

    Article  Google Scholar 

  • Barré, R. (2010). Towards socially robust ST indicators: indicators as debatable devices, enabling collective learning. Research Evaluation, 19(3), 227–231.

    Article  Google Scholar 

  • Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science & Technology, 37(1), 179–255.

    Article  Google Scholar 

  • Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., Larivière, V., & Boyack, K. W. (2012). Design and update of a classification system: the UCSD map of science. PLoS One, 7(7), e39464.

    Google Scholar 

  • Boschma, R. A. (2005). Proximity and innovation: a critical assessment. Regional Studies, 39, 61–74.

    Article  Google Scholar 

  • Boyack, K. W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45–60.

    Article  Google Scholar 

  • Boyack, K.W., Klavans, R., Small, H., Ungar, L. (2014). Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science. Journal of Engineering and Technology Management, 32, 147–159.

    Google Scholar 

  • Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., et al. (2011). Clustering more than two million biomedical publications: comparing the accuracies of nine text-based similarity approaches. PLoS One, 6, e18029.

    Article  Google Scholar 

  • Carley, S., & Porter, A. (2012). A forward diversity index. Scientometrics, 90, 407–427.

    Article  Google Scholar 

  • Cassi, L., Mescheba, W., Turckheim, É. (2014). How to evaluate the degree of interdisciplinarity of an institution? Scientometrics. In press. doi: 10.1007/s11192-014-1280-0.

  • Chavarro, D., Tang, P., Rafols, I. (2014). Interdisciplinarity and local issue research: evidence from a developing country. Research Evaluation, 23(3), 195–209. doi: 10.1093/reseval/rvu012.

  • Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3, 191–209.

    Article  Google Scholar 

  • Dosi, G. (1982). Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.

    Article  Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: from national systems and “Mode 2” to a triple helix of university-industry-government relations. Research Policy, 29, 109–123.

    Article  Google Scholar 

  • Frenken, K. (2010). Geography of scientific knowledge: a proximity approach. Eindhoven Centre for Innovation Studies (ECIS). Retrieved from http://alexandria.tue.nl/repository/books/720753.pdf.

  • Frenken, K., Boschma, R. A., Hardeman, S. (2010). Proximity and Mode 2 knowledge production. Preprint. Retrieved from http://econ.geo.uu.nl/boschma/frenkenEcon&society.pdf.

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: the dynamics of science and research in contemporary societies. London: Sage.

    Google Scholar 

  • Hackett, E. J., Parker, J., Conz, D., Rhoten, D., & Parker, A. (2008). Ecology transformed: the national center for ecological analysis and synthesis and the changing patterns of ecological research. In The handbook of science and technology studies (pp. 277–296). Cambridge MA: MIT.

    Google Scholar 

  • Havemann, F., Gläser, J., Heinz, M., & Struck, A. (2012). Identifying overlapping and hierarchical thematic structures in networks of scholarly papers: a comparison of three approaches. PLoS One, 7, e33255.

    Article  Google Scholar 

  • Hessels, L. K., & van Lente, H. (2008). Re-thinking new knowledge production: a literature review and a research agenda. Research Policy, 37, 740–760.

    Article  Google Scholar 

  • Jensen, P., & Lutkouskaya, K. (2014). The many dimensions of laboratories’ interdisciplinarity. Scientometrics, 98(1), 619–631.

    Article  Google Scholar 

  • Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75, 771–782.

    Article  Google Scholar 

  • Kay, L., Newman, N., Youtie, J., Porter, A. L., Rafols, I. (2014). Patent overlay mapping: visualizing technological distance. Journal of the Association for Information Science and Technology. In press. doi: 10.1002/asi.23146

  • Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.

    Article  Google Scholar 

  • Klavans, R., & Boyack, K. W. (2011). Using global mapping to create more accurate document-level maps of research fields. Journal of the American Society for Information Science and Technology, 62, 1–18.

    Article  Google Scholar 

  • Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58, 1303–1319.

    Article  Google Scholar 

  • Leydesdorff, L., Carley, S., & Rafols, I. (2012). Global maps of science based on the new web-of-science categories. Scientometrics, 94, 589–593.

    Article  Google Scholar 

  • Leydesdorff, L., Kushnir, D., Rafols, I. (2014). Interactive overlay maps for US Patent (USPTO) data based on International Patent Classifications (IPC). Scientometrics, 98(3), 1583–1599. doi: 10.1007/s11192-012-0923-2.

  • Leydesdorff, L., & Rafols, I. (2011a). Local emergence and global diffusion of research technologies: an exploration of patterns of network formation. Journal of the American Society for Information Science and Technology, 62, 846–860.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2011b). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5, 87–100.

    Article  Google Scholar 

  • Leydesdorff, L., Rafols, I., & Chen, C. (2013). Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations. Journal of the American Society for Information Science and Technology, 64(12), 2573–2586.

    Article  Google Scholar 

  • Leydesdorff, L., Rotolo, D., & Rafols, I. (2012). Bibliometric perspectives on medical innovation using the medical subject headings (MeSH) of PubMed. Journal of the American Society for Information Science and Technology, 63, 2239–2253.

    Article  Google Scholar 

  • Liu, Y. X., Rafols, I., & Rousseau, R. (2012). A framework for knowledge integration and diffusion. Journal of Documentation, 68, 31–44.

    Article  Google Scholar 

  • Liu, Y. X., & Rousseau, R. (2010). Knowledge diffusion through publications and citations: a case study using ESI-fields as unit of diffusion. Journal of the American Society for Information Science and Technology, 61, 340–351.

    Google Scholar 

  • Lowe, P., & Phillipson, J. (2006). Reflexive interdisciplinary research: the making of a research programme on the rural economy and land use. Journal of Agricultural Economics, 57, 165–184.

    Article  Google Scholar 

  • Molas-Gallart, J., Rafols, I., D’Este, P., Llopis, O. (2013). A framework for the evaluation of translational research based on the characterization of social networks and knowledge exchange processes. Presented at the Annual Meeting of the American Evaluation Association, Washington, DC, USA. Available at http://www.ingenio.upv.es/en/working-papers/towards-alternative-framework-evaluation-translational-research-initiatives

  • Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58, 2167–2179.

    Article  Google Scholar 

  • National Academies. (2004). Facilitating Interdisciplinary research. Washington, DC: National Academies.

    Google Scholar 

  • Nesta, L., & Saviotti, P. P. (2005). Coherence of the knowledge base and the firm’s innovative performance: evidence from the U.S. pharmaceutical industry. Journal of Industrial Economics, 8, 123–142.

    Article  Google Scholar 

  • Nesta, L., & Saviotti, P. P. (2006). Firm knowledge and market value in biotechnology. Industrial and Corporate Change, 15, 625–652.

    Article  Google Scholar 

  • Nightingale, P., & Scott, A. (2007). Peer review and the relevance gap: ten suggestions for policy makers. Science and Public Policy, 34, 543–553.

    Article  Google Scholar 

  • Pinch, T. J., & Bijker, W. E. (1984). The social construction of facts and artefacts: or how the sociology of science and the sociology of technology might benefit each other. Social Studies of Science, 14, 399–441.

    Article  Google Scholar 

  • Polanco, X., François, C., & Lamirel, J. C. (2001). Using artificial neural networks for mapping of science and technology: a multi self-organizing-maps approach. Scientometrics, 51, 267–292.

    Article  Google Scholar 

  • Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72, 117–147.

    Article  Google Scholar 

  • Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81, 719–745.

    Article  Google Scholar 

  • Porter, A. L., Roessner, J. D., & Heberger, A. E. (2008). How interdisciplinary is a given body of research? Research Evaluation, 17, 273–282.

    Article  Google Scholar 

  • Rafols, I., Ciarli, T., Van Zwanenberg, P., Stirling, A. (2012). Towards indicators for opening up S&T policy. STI Indicators Conference (pp.675–682). Retrieved from http://2012.sticonference.org/Proceedings/vol2/Rafols_Towards_675.pdf.

  • Rafols, I., & Leydesdorff, L. (2009). Content-based and algorithmic classifications of journals: perspectives on the dynamics of scientific communication and indexer effects. Journal of the American Society for Information Science and Technology, 60, 1823–1835.

    Article  Google Scholar 

  • Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P., & Stirling, A. (2012). How journal rankings can suppress interdisciplinarity. The case of innovation studies and business and management. Research Policy, 41, 1262–1282.

    Article  Google Scholar 

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience. Scientometrics, 82, 263–287.

    Article  Google Scholar 

  • Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: a new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61, 1871–1887.

    Article  Google Scholar 

  • Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24–43.

    Article  MATH  MathSciNet  Google Scholar 

  • Ricotta, C., & Szeidl, L. (2006). Towards a unifying approach to diversity measures: bridging the gap between the Shannon entropy and Rao’s quadratic index. Theoretical Population Biology, 70, 237–243.

    Article  MATH  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105, 1118–1123.

    Article  Google Scholar 

  • Schoen, A., Villard, L., Laurens, P., Cointet, J. P., Heimeriks, G., Alkemade, F. (2012). The network structure of technological developments; technological distance as a walk on the technology map. Presented at the STI Indicators Conference, Montréal

    Google Scholar 

  • Skupin, A., Biberstine, J. R., & Börner, K. (2013). Visualizing the topical structure of the medical sciences: a self-organizing map approach. PLoS One, 8, e58779.

    Article  Google Scholar 

  • Soós, S., & Kampis, G. (2011). Towards a typology of research performance diversity: the case of top Hungarian players. Scientometrics, 87, 357–371.

    Article  Google Scholar 

  • Soós, S., & Kampis, G. (2012). Beyond the basemap of science: mapping multiple structures in research portfolios—evidence from Hungary. Scientometrics, 93, 869–891.

    Article  Google Scholar 

  • Stirling, A. (1998). On the economics and analysis of diversity. Science Policy Research Unit (SPRU), Electronic Working Papers Series, 28. Retrieved from http://www.uis.unesco.org/culture/documents/stirling.pdf.

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of The Royal Society Interface, 4, 707–719.

    Article  Google Scholar 

  • Takeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: a bibliometric approach. Scientometrics, 80, 23–29.

    Article  Google Scholar 

  • Waltman, L., & van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63, 2378–2392.

    Article  Google Scholar 

  • Yegros-Yegros, A., Amat, C.B., D’Este, P., Porter, A.L., & Rafols, I. (2013). Does interdisciplinary research lead to higher citation impact? The different effect of proximal and distal interdisciplinarity. Presented at the DRUID Conference, Barcelona. Retrieved from http://druid8.sit.aau.dk/acc_papers/54dcxbblnj9vbrlt2v4gku686mcx.pdf.

Download references

Acknowledgements

This chapter summarises work carried out with many collaborators, in particular with L. Leydesdorff, A.L. Porter and A. Stirling. I am grateful to D. Chavarro for writing the code in R language to compute diversity. I thank Y.X. Liu, R. Rousseau and A. Stirling for fruitful comments. I acknowledge support from the UK ESRC grant RES-360-25-0076 (“Mapping the dynamics of emergent technologies”) and the US National Science Foundation (Award #1064146—“Revealing Innovation Pathways: Hybrid Science Maps for Technology Assessment and Foresight”). The findings and observations contained in this paper are those of the author and do not necessarily reflect the views of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Rafols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rafols, I. (2014). Knowledge Integration and Diffusion: Measures and Mapping of Diversity and Coherence. In: Ding, Y., Rousseau, R., Wolfram, D. (eds) Measuring Scholarly Impact. Springer, Cham. https://doi.org/10.1007/978-3-319-10377-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10377-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10376-1

  • Online ISBN: 978-3-319-10377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics