Skip to main content

Recombination and Gene Targeting in Neurospora

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Genetic manipulation, especially targeted gene replacement, is a potential powerful tool for gene functional research and industrial engineering in filamentous fungi. However, low frequency of gene targeting in most filamentous fungi has hampered research on the molecular mechanisms of these species. In this chapter, we describe the relationship between exogenous DNA integration events and cellular DNA double-strand repair machinery in one of the model filamentous fungi, Neurospora crassa. Based on the molecular mechanism, it has been proven that the gene-targeting frequency is dramatically increased when nonhomologous end-joining, that promotes chromosomal random integration, was deficient in Neurospora and various other fungi. This technique has opened a new avenue for genetic manipulation in filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alshahni MM, Yamada T, Takatori K, Sawada T, Makimura K (2011) Insights into a nonhomologous integration pathway in the dermatophyte Trichophyton mentagrophytes: efficient targeted gene disruption by use of mutants lacking ligase IV. Microbiol Immunol 55(1):34–43

    Article  PubMed  CAS  Google Scholar 

  • Bertolini LR, Bertolini M, Maga EA, Madden KR, Murray JD (2009) Increased gene targeting in Ku70 and Xrcc4 transiently deficient human somatic cells. Mol Biotechnol 41(2):106–114

    Article  PubMed  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68(1):1–108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bugeja HE, Boyce KJ, Weerasinghe H, Beard S, Jeziorowski A, Pasricha S, Payne M, Schreider L, Andrianopoulos A (2012) Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei. Fungal Genet Biol 49(10):772–778

    Article  PubMed  CAS  Google Scholar 

  • Chang PK (2008) A highly efficient gene-targeting system for Aspergillus parasiticus. Lett Appl Microbiol 46(5):587–592

    Article  PubMed  CAS  Google Scholar 

  • Chang PK, Scharfenstein LL, Wei Q, Bhatnagar D (2010) Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. J Microbiol Methods 81(3):240–246

    Article  PubMed  CAS  Google Scholar 

  • Choquer M, Robin G, Le Pecheur P, Giraud C, Levis C, Viaud M (2008) Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. FEMS Microbiol Lett 289(2):225–232

    Article  PubMed  CAS  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103(27):10352–10357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23(10):394–398

    Article  PubMed  CAS  Google Scholar 

  • da Silva Ferreira ME, Kress MR, Savoldi M, Goldman MH, Hartl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5(1):207–211

    Article  PubMed  PubMed Central  Google Scholar 

  • de Boer P, Bastiaans J, Touw H, Kerkman R, Bronkhof J, van den Berg M, Offringa R (2010) Highly efficient gene targeting in Penicillium chrysogenum using the bi-partite approach in deltalig4 or deltaku70 mutants. Fungal Genet Biol 47(10):839–846

    Article  PubMed  Google Scholar 

  • de Jong JF, Ohm RA, de Bekker C, Wosten HA, Lugones LG (2010) Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 310(1):91–95

    Article  PubMed  Google Scholar 

  • Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M, Kasuga T, Tian C, Basturkmen M, Altamirano L, Xu J (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • El-Khoury R, Sellem CH, Coppin E, Boivin A, Maas MF, Debuchy R, Sainsard-Chanet A (2008) Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Curr Genet 53(4):249–258

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Zhang Y, Cai M, Zhang J, Zhou X (2012) Improved gene targeting frequency in marine-derived filamentous fungus Aspergillus glaucus by disrupting ligD. J Appl Genet 53(3):355–362

    Article  PubMed  CAS  Google Scholar 

  • Fattah FJ, Lichter NF, Fattah KR, Oh S, Hendrickson EA (2008) Ku70, an essential gene, modulates the frequency of rAAV-mediated gene targeting in human somatic cells. Proc Natl Acad Sci U S A 105(25):8703–8708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fox BA, Ristuccia JG, Gigley JP, Bzik DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8(4):520–529

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868

    Article  PubMed  CAS  Google Scholar 

  • Goins CL, Gerik KJ, Lodge JK (2006) Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genet Biol 43(8):531–544

    Article  PubMed  CAS  Google Scholar 

  • Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139(2):146–151

    Article  PubMed  CAS  Google Scholar 

  • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519–2524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45(1):35–44

    Article  PubMed  CAS  Google Scholar 

  • Handa N, Noguchi Y, Sakuraba Y, Ballario P, Macino G, Fujimoto N, Ishii C, Inoue H (2000) Characterization of the Neurospora crassa mus-25 mutant: the gene encodes a protein which is homologous to the Saccharomyces cerevisiae Rad54 protein. Mol Gen Genet 264(1–2):154–163

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Ishii C, Inoue H (1995) Identification and expression of the Neurospora crassa mei-3 gene which encodes a protein homologous to Rad51 of Saccharomyces cerevisiae. Mol Gen Genet 249(4):439–446

    Article  PubMed  CAS  Google Scholar 

  • He Y, Liu Q, Shao Y, Chen F (2013) Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 97(11):4965–4976

    Article  PubMed  CAS  Google Scholar 

  • Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75(4):1929–1933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iiizumi S, Kurosawa A, So S, Ishii Y, Chikaraishi Y, Ishii A, Koyama H, Adachi N (2008) Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting. Nucleic Acids Res 36(19):6333–6342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 103:14871–14876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ishidoh KI, Kinoshita H, Ihara F, Nihira T (2014) Efficient and versatile transformation systems in entomopathogenic fungus Lecanicillium species. Curr Genet 60(2):99–108

    Article  PubMed  CAS  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5(1):212–215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuck U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86(1):51–62

    Article  PubMed  Google Scholar 

  • Lan X, Yao Z, Zhou Y, Shang J, Lin H, Nuss DL, Chen B (2008) Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency. Curr Genet 53(1):59–66

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Du CM, Zhong YH, Wang TH (2010) Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 87(3):1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Ma JL, Kim EM, Haber JE, Lee SE (2003) Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 23(23):8820–8828

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128(4):770–775

    Article  PubMed  CAS  Google Scholar 

  • Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45(6):878–889

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T (2011) Efficient gene targeting in DeltaCc.ku70 or DeltaCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48(10):939–946

    Article  PubMed  CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172(3):1557–1566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nielsen JB, Nielsen ML, Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45(3):165–170

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101(33):12248–12253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196(4):1048–1059

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78(10):6354–6358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perkins DD, Barry EG (1977) The cytogenetics of Neurospora. Adv Genet 19:133–285

    Article  PubMed  CAS  Google Scholar 

  • Poggeler S, Kuck U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10

    Article  PubMed  Google Scholar 

  • Sakuraba Y, Schroeder AL, Ishii C, Inoue H (2000) A Neurospora double-strand-break repair gene, mus-11, encodes a RAD52 homologue and is inducible by mutagens. Mol Gen Genet 264(4):392–401

    Article  PubMed  CAS  Google Scholar 

  • Schorsch C, Kohler T, Boles E (2009) Knockout of the DNA ligase IV homolog gene in the sphingoid base producing yeast Pichia ciferrii significantly increases gene targeting efficiency. Curr Genet 55(4):381–389

    Article  PubMed  CAS  Google Scholar 

  • Schroeder AL, Inoue H, Sachs MS (1998) DNA repair in Neurospora. DNA Damage and Repair 1:503–538

    Article  CAS  Google Scholar 

  • Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  PubMed  CAS  Google Scholar 

  • Szewczyk E, Kasuga T, Fan Z (2013) Efficient sequential repetitive gene deletions in Neurospora crassa employing a self-excising beta-recombinase/six cassette. J Microbiol Methods 92(3):236–243

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275(5):460–470

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Ishii C, Hatakeyama S, Inoue H (2010) High efficient gene targeting on the AGAMOUS gene in an Arabidopsis AtLIG4 mutant. Biochem Biophys Res Commun 396(2):289–293

    Article  PubMed  CAS  Google Scholar 

  • Tani S, Tsuji A, Kunitake E, Sumitani J, Kawaguchi T (2013) Reversible impairment of the ku80 gene by a recyclable marker in Aspergillus aculeatus. AMB Express 3(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Ushimaru T, Terada H, Tsuboi K, Kogou Y, Sakaguchi A, Tsuji G, Kubo Y (2010) Development of an efficient gene targeting system in Colletotrichum higginsianum using a non-homologous end-joining mutant and Agrobacterium tumefaciens-mediated gene transfer. Mol Genet Genomics 284(5):357–371

    Article  PubMed  CAS  Google Scholar 

  • Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45(1):68–75

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Gabriel A (2003) Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 163(3):843–856

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suzuki, K., Inoue, H. (2015). Recombination and Gene Targeting in Neurospora . In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_24

Download citation

Publish with us

Policies and ethics