Skip to main content

Evaluation of Competence Phenomenon of Yeast Saccharomyces cerevisiae by Lipophilic Cations Accumulation and FT-IR Spectroscopy. Relation of Competence to Cell Cycle

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Part of the book series: Fungal Biology ((FUNGBIO))

  • 2741 Accesses

Abstract

Capability of taking up exogenous DNA of yeast Saccharomyces cerevisiae cells was studied by lipophilic cations accumulation and FT-IR spectroscopy. The increase in permeability of the yeast cells treated with Li+ ions was observed. The changes in the cell wall structure detected by FT-IR spectra were associated with transformability of yeast cells. The presence of a population of cells with buds with a higher permeability to TPP cations was determined. Relationship between transformation efficiency of yeast Saccharomyces cerevisiae and cell cycle was determined. Yeast cells in the S-phase of cell cycle showed an enhanced perception to exogenous DNA. An increase was associated with physiological and permeability properties of yeast cells. The phenomenon of natural competence is supposed to occur in yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Uscanga B, François JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274

    Article  PubMed  CAS  Google Scholar 

  • Ballarin-Denti A, Slayman CL, Kuroda H (1994) Small lipid-soluble cations are not membrane voltage probes for Neurospora or Saccharomyces. Biochim Biophys Acta 1190:43–56

    Article  PubMed  CAS  Google Scholar 

  • Ballou L, Hernandez LM, Alvarado E, Ballou CE (1990) Revision of the oligosaccharide structures of yeast carboxypeptidase Y. Proc Natl Acad Sci U S A 87(9):3368–3372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:441–472

    Google Scholar 

  • Boone C, Sommer SS, Hensel A, Bussey H (1990) Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol 110:1833–1843

    Article  PubMed  CAS  Google Scholar 

  • Brewer BJ, Chlebowicz-Sledziewska E, Fangman WL (1984) Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae. Mol Cell Biol 4:2529–2531

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brzobohaty B, Kovac L (1986) Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J Gen Microbiol 132:3089–3093

    PubMed  CAS  Google Scholar 

  • Brown JL, Kossarczka Z, Jiang B, Bussey H (1993) A mutational analysis of killer resistance in identifies new genes involved in Saccharomyces cerevisiae cell wall (1–6)-beta-glucan synthesis. Genetics 133:837–849

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boxman AW, Barts PWJA, Borst-Pauwels GWFH (1982) Some characteristics of tetraphenylphosphonium uptake into S. cerevisiae. Biochim Biophys Acta 686:13–18

    Article  PubMed  CAS  Google Scholar 

  • Caro LH, Smits GJ, van Egmond P, Chapman JW, Klis FM (1998) Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differentially regulated during the cell cycle. FEMS Microbiol Lett 161:345–349

    Article  PubMed  CAS  Google Scholar 

  • Chaustova L (2000) Plasmid transformation efficiency of Saccharomyces cerevisiae with defects in cell wall synthesis. Biologija (Lithuania) 4:3–5

    Google Scholar 

  • Chaustova L, Jasaitis A (1994) Changes in the efficiency of yeast Saccharomyces cerevisiae transformation by plasmid DNA during synchronous growth and under the influence of lypophilic compounds. Biologija (Lithuania) 1:8–13

    Google Scholar 

  • Chaustova L, Zimkus A (2004) Relationship between the efficiency of yeast Saccharomyces cerevisiae transformation and cell cycle. Biologija (Lithuania) 2:29–32

    Google Scholar 

  • Chaustova L, Miliukienė V, Zimkus A, Razumas V (2008) Metabolic state and cell cycle as determinants of facilitated uptake of genetic information by yeast Saccharomyces cerevisiae. Cent Eur J Biol 4:417–421

    Article  Google Scholar 

  • Casal HL, Mantsch HH, Paltauf F, Hauser H (1973) Infrared and 3* P-NMR studies of the effect of Li+ and Ca2+ on phosphatidylserines. Biochim Biophys Acta 919:275–286

    Article  Google Scholar 

  • Chen P, Liu HH, Cui R, Zhang ZL, Pang DW, Xie ZX, Zheng HZ, Lu ZX, Tong H (2008) Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta 77:262–268

    Article  PubMed  CAS  Google Scholar 

  • Cid VJ, Cenamor R, Duran A, Del Ray F, Snyder MP, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen E, Gitler C, Ben-Shaul Y (1981) Cell surface labeling of embryonic neural retina cells exposed to low temperature, energy inhibitors, cytochalasin B and colchicin. Cell Differ 10:333–342

    Article  PubMed  CAS  Google Scholar 

  • De Nobel H, Dijkers C, Hooijberg E, Klis FM (1989) Increased cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreitol or EDTA. J Gen Microbiol 135:2077–2084

    Google Scholar 

  • De Nobel H, Klis FM, Priem J, Munnik T, Van den Ende H (1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491–499

    Article  PubMed  Google Scholar 

  • De Nobel H, van Den Ende H, Klis FM (2000) Cell wall maintenance in fungi. Trends Microbiol 8:344–345

    Article  PubMed  Google Scholar 

  • Dreiseikelmann B (1994) Translocation of DNA across bacterial membrane. Microbiol Rev 58:293–316

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244

    Article  PubMed  CAS  Google Scholar 

  • Elkins C, Thomas CE, Seifert HS, Sparling PF (1991) Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173:3911–3913

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eynard N, Rols M, Ganeva P, Galutzov V, Sabri N, Teissie J (1997) Electro transformation pathways of prokaryotic and eucaryotic cells: recent developments. Bioelectrochem Bioenerg 44:103–110

    Article  CAS  Google Scholar 

  • Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63–77

    Article  PubMed  CAS  Google Scholar 

  • Galichet G, Sockalingum A, Belarbi A, Manfait M (2001) FTIR spectroscopic analysis of cell walls: study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiol Lett 197:179–186

    Article  PubMed  CAS  Google Scholar 

  • Gásková D, Brodská B, Herman P, Vecer J, Malínský J, Sigler K, Benada O, Plásek J (1998) Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae. Yeast 14:1189–1197

    Article  PubMed  Google Scholar 

  • Gietz R, Jean A, Woods R, Schiestl R (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hakenbeck R (2000) Transformation in Streptococcus pneumoniae: mosaic genes and the regulation of competence. Res Microbiol 151:453–456

    Article  PubMed  CAS  Google Scholar 

  • Hausler A, Ballou L, Ballou CE, Robbins PW (1992) Yeast glycoprotein biosynthesis: MNT1 encodes an α-1,2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci U S A 89:6846–6850

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayama Y, Fukuda Y, Kawai S, Hashimoto W, Murata K (2002) Extremely simple, rapid and highly efficient transformation method for the yeast Saccharomyces cerevisiae using glutathione and early log phase cells. J Biosci Bioeng 94:166–171

    Article  PubMed  CAS  Google Scholar 

  • Helm D, Naumann D (1995) Identification of some bacterial cell components by FT-IR spectroscopy. FEMS Microbiol Lett 126:75–80

    Article  CAS  Google Scholar 

  • Henderson DO, Mu R, Gunasekaran M (1996) A rapid method for the identification of Candida at the species level by Fourier-transform infrared spectroscopy. Biochem Lett 51:223–228

    Google Scholar 

  • Hill K, Boone C, Goebl M, Puccia R, Sdicu AM, Bussey H (1992) Yeast KRE2 defines a new family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins. Genetics 130:273–283

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75:1929–1933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ito H, Fukuda J, Murata K, Kimura A (1983) Transformation of intact yeast cells with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kamei H (1995) A nuclear dot-like structure that has a relationship with perinuclear intermediate filaments. Exp Cell Res 218:155–165

    Article  PubMed  CAS  Google Scholar 

  • Kapteyn JC, van den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426:373–383

    Article  PubMed  CAS  Google Scholar 

  • Karreman RJ, Dague E, Gaboriaud F, Quiles F, Duval JFL, Lindsey GG (2007) The stress response protein Hsp 12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall. Biochim Biophys Acta 1774:131–137

    Article  PubMed  CAS  Google Scholar 

  • Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi. Methods and possible underlying mechanism. Bioeng Bugs 1:395–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai S, Pham TA, Nguyen HT, Nankai H, Utsumi T, Fukuda Y, Murata K (2004) Molecular insights on DNA delivery into Saccharomyces cerevisiae. Biochem Biophys Res Commun 317:100–107

    Article  PubMed  CAS  Google Scholar 

  • Kollar R, Reinhold B, Petráková E, Yeh HJC, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. J Biol Chem 272:17762–17775

    Article  PubMed  CAS  Google Scholar 

  • Klis FM (1994) Review: cell all assembly in yeast. Yeast 10:851–869

    Article  PubMed  CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    Article  PubMed  CAS  Google Scholar 

  • Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23(3):185–202

    Article  PubMed  CAS  Google Scholar 

  • Kümmerle M, Scherer S, Seiler H (1998) Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl Environ Microbiol 64:2207–2214

    PubMed  PubMed Central  Google Scholar 

  • Laidiga KE, Speers P, Streitwieser A (2000) Complexation of Li, Na, and K by water and ammonia. Coord Chem Rev 197:125–139

    Article  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu CF, Montijn RC, Brown JL, Klis F, Kurjan J, Bussey H, Lipke PN (1995) Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128:333–340

    Article  PubMed  CAS  Google Scholar 

  • Lyubartsev AP, Laaksonen A (1998) Molecular dynamics simulation of DNA in presence of different counterions. J Biomol Struct Dyn 16:579–592

    Article  PubMed  CAS  Google Scholar 

  • Marenzi S, Adams R, Zardo G, Lenti L, Reale A, Caiafa P (1999) Efficiency of expression of transfected genes depends on the cell cycle. Mol Biol Rep 26:261–267

    Article  PubMed  CAS  Google Scholar 

  • Mariey L, Signolle JP, Amiel C, Travert J (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc 26:151–159

    Article  CAS  Google Scholar 

  • Mitrikeski P (2013) Yeast competence for exogenous DNA uptake: towards understanding its genetic component. Antonie Van Leeuwenhoek 103(6):1181–1207

    Article  PubMed  CAS  Google Scholar 

  • Meilhoc E, Masson JM, Teissié J (1990) High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N Y) 8:223–227

    Article  CAS  Google Scholar 

  • Misiūnas A, Talaikytė Z, Niaura G, Razumas V, Nylander T (2008) Thermomyces lanuginosus lipase in the liquid-crystalline phases of aqueous phytantriol: x-ray diffraction and vibrational spectroscopic studies. Biophys Chem 134:144–156

    Article  PubMed  Google Scholar 

  • Naumann D (1998) Infrated and NIR Raman spectroscopy in medical microbiology. In: Manch HH, Jackson M (eds) Infrared spectroscopy: new tool in medicine, vol 3257, SPIE Proceeding Series. SPIE, Bellingham, pp 245–257

    Google Scholar 

  • Naumann D (2000) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 102–131

    Google Scholar 

  • Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82

    Article  PubMed  CAS  Google Scholar 

  • Naumann D, Keller S, Helm D, Schultz C, Schrader B (1995) FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J Mol Struct 347:399–406

    Article  CAS  Google Scholar 

  • Nasmyth K (2001) A prize for proliferation. Cell 107:689–701

    Article  PubMed  CAS  Google Scholar 

  • Nevoigt E, Fassbender A, Stahl U (2000) Cells of the Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions. Yeast 16:1107–1110

    Article  PubMed  CAS  Google Scholar 

  • Ojeda JJ, Romero-Gonza’lez ME, Bachmann RT, Edyvean RGJ, Banwart SA (2008) Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 24:4032–4040

    Article  PubMed  CAS  Google Scholar 

  • Orlean P (1997) Biogenesis of yeast wall and surface components. In: Pringle JR, Broach JR, Jones EW (eds) Cell cycle and cell biology, vol 3, vol 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 229–362

    Google Scholar 

  • Orsini F, Ami D, Villa AM, Sala G, Bellotti MG, Doglia SM (2000) FT-IR microspectroscopy for microbiological studies. J Microbiol Meth 42:17–27

    Article  CAS  Google Scholar 

  • Popolo L, Gualtieri T, Ragni E (2001) The yeast cell-wall salvage pathway. Med Mycol 39:111–121

    Article  PubMed  CAS  Google Scholar 

  • Pringle JR, Lillie SH, Adams AE et al (1986) Cellular morphogenesis in the yeast cell cycle. In: Hicks J (ed) Yeast cell biology, vol 33. Alan R. Liss, New York, pp 47–80

    Google Scholar 

  • Pringle JR (1991) Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194:732–735

    Article  PubMed  CAS  Google Scholar 

  • Raschke WC, Kern KA, Antalis C, Ballou CE (1973) Isolation and characterization of mannan mutants. J Biol Chem 248:4660–4666

    PubMed  CAS  Google Scholar 

  • Roemer T, Bussey H (1991) Yeast-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci U S A 88:11295–11299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roemer T, Paravicini G, Payton MA, Bussey H (1994) Characterization of the yeast (1–6)-b-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell Biol 127:567–579

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20:3245–3255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rotenberg H (1997) The measurement of membrane potential and pH in cells, organelles and vesicles. In: Parker L, Fleisher S (eds) Biomembranes, selected methods in enzymology. Academic, San Diego

    Google Scholar 

  • Ruiz-Herrera J (1992) Fungal cell wall: structure, synthesis, and assembly. CRC, Boca Raton

    Google Scholar 

  • Sandt C, Sockalingum GD, Aubert D, Lepan H, Lepouse C, Jaussaud M, Leon A, Pinon JM, Manfait M, Toubas D (2003) Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol 41:954–959

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Santos C, Fraga ME, Kozakiewicz Z, Lima N (2010) Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res Microbiol 161:168–175

    Article  PubMed  CAS  Google Scholar 

  • Sasnauskas K, Jomantiene R, Geneviciute E, Januska A, Lebedys J (1991) Molecular cloning of the Candida maltose ADE1 gene. Gene 107:161–164

    Article  PubMed  CAS  Google Scholar 

  • Siebert F (1995) Infrared spectroscopy applied to biochemical and biological problems. In: Sauer K (ed) Biochemical spectroscopy, methods in enzymology. Wiley, New York, pp 501–526

    Chapter  Google Scholar 

  • Smits GJ, Kapteyn JC, van den Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352

    Article  PubMed  CAS  Google Scholar 

  • Smits G, van den Ende H, Klis FM (2001) Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147:781–794

    PubMed  CAS  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suga M, Isobe M, Hatakeyama T (2001) High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast 18:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan N, Thresia T, Thekkumkat JT, Chennakkatu KSP (2006) Lithium ion induced stabilization of the liquid crystalline DNA. Macromol Biosci 6:27–32

    Article  PubMed  CAS  Google Scholar 

  • Venturi CB, Erkine AM, Gross DS (2000) Cell cycle-dependent binding of yeast heat shock factor to nucleosomes. Mol Cell Biol 20:6435–6448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68:4717–4721

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimkus A, Chaustova L (2004) Application of the liquid membrane combination of the tetraphenylphosphonium selective electrode for an assay of permeability properties of yeast Saccharomyces cerevisiae cells. Chemija (Lithuania) 2:27–30

    Google Scholar 

  • Zimkus A, Chaustova L, Razumas V (2006) Effect of lithium and sodium cations on the permeability of yeast Saccharomyces cerevisiae cells to tetraphenylphosphonium ions. Biologija (Lithuania) 2:47–49

    Google Scholar 

  • Zimkus A, Misiūnas A, Chaustova L (2013) Li+ effect on the cell wall of the yeast Saccharomyces cerevisiae as probed by FT-IR spectroscopy. Cent Eur J Biol 8:724–729

    Article  CAS  Google Scholar 

  • Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelijus Zimkus Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zimkus, A., Misiūnas, A., Ramanavičius, A., Chaustova, L. (2015). Evaluation of Competence Phenomenon of Yeast Saccharomyces cerevisiae by Lipophilic Cations Accumulation and FT-IR Spectroscopy. Relation of Competence to Cell Cycle. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_23

Download citation

Publish with us

Policies and ethics