Skip to main content

Spectral Properties of Wall-Pressure Fluctuations and Their Estimation from Computational Fluid Dynamics

  • Conference paper
  • First Online:
Flinovia - Flow Induced Noise and Vibration Issues and Aspects

Abstract

The various methods to obtain 1-point and 2-point statistical properties of wall-pressure fluctuations from CFD are described and discussed. If only averaged flow quantities are available through Reynolds Averaged Navier Stokes computations, empirical models or sophisticated statistical modeling have to be used to estimate wall-pressure spectra and spatial correlations. While very useful at design stage, their applicability to complex flows or geometries seems quite limited. Considering the rapid growth of computational power, it seems clear that the main pathway for the near future is to rely on time-dependent flow simulations, typically Large Eddy Simulations, and to estimate the pressure statistics through a posteriori signal processing. It seems also possible, at the moment only for relatively high Mach number flows, to estimate not only the hydrodynamic part but also the tiny acoustic contribution. Examples of computations of this acoustic contribution to wall-pressure are given together with related experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.M. Abraham, W.L. Keith, Direct measurements of turbulent boundary layer wall pressure wavenumber-frequency spectra. J. Fluid Eng. 120, 29–39 (1998)

    Article  Google Scholar 

  2. B. Arguillat, Etude expérimentale et numérique de champs de pression pariétale dans l’espace des nombres d’onde, avec application aux vitrages automobiles, Ph.D. thesis, Ecole centrale de Lyon, 2006, pp. 2006–2014

    Google Scholar 

  3. B. Arguillat, D. Ricot, C. Bailly, G. Robert, Measured wavenumber-frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations. J. Acoust. Soc. Am. 128(4), 1647–1655 (2010)

    Article  Google Scholar 

  4. C. Bailly, C. Bogey, O. Marsden, Progress in direct noise computation. Int. J. Aeroacoustics 9(1–2), 123–143 (2011)

    Google Scholar 

  5. C. Bogey, O. Marsden, C. Bailly, Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105. J. Fluid Mech. 701, 352–385 (2012)

    Article  MATH  Google Scholar 

  6. D.M. Chase, Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70(1), 29–67 (1980)

    Article  MATH  Google Scholar 

  7. D.M. Chase, The character of turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112, 125–147 (1987)

    Article  Google Scholar 

  8. H. Choi, P. Moin, On the space-time characteristics of wall pressure fluctuations. Phys. Fluids A 2, 1450–1460 (1990)

    Article  Google Scholar 

  9. G.M. Corcos, The structure of turbulent pressure field in boundary layer flows. J. Fluid Mech. 18(3), 353–378 (1964)

    Article  MATH  Google Scholar 

  10. K. Ehrenfried, L. Koop, Experimental study of pressure fluctuations beneath a compressible turbulent boundary layer. In: 14th AIAA/CEASAeroacoustics Conference, AIAA Paper (2008), pp. 2008–2800

    Google Scholar 

  11. C. Gabriel, S. Müller, F. Ullrich, R. Lerch, A new kind of sensor array for measuring spatial coherence of surface pressure on a car’s side window. J. Sound Vib. 333, 901–915 (2014)

    Article  Google Scholar 

  12. X. Gloerfelt, J. Berland, Turbulent boundary layer noise: direct radiation at Mach number 0.5. J. Fluid Mech. 723, 318–351 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Goody, Empirical spectral model of surface pressure fluctuations. AIAA J. 42(9), 1788–1794 (2004)

    Article  Google Scholar 

  14. W.R. Graham, Boundary layer induced noise in aircraft, part I: the flat plate model. J. Sound Vib. 192(1), 101–120 (1996)

    Article  Google Scholar 

  15. W.R. Graham, A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 206(4), 541–565 (1997)

    Article  Google Scholar 

  16. M.S. Howe, Acoustics of Fluid Structure Interactions (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  17. Z.W. Hu, C.L. Morfey, N.D. Sandham, Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44(7), 1541–1549 (2006)

    Article  Google Scholar 

  18. S.A. Karabasov, M.Z. Afsar, T.P. Hynes, A.P. Dowling, W.A. McMullan, C.D. Pokora, G.J. Page, J.J. McGuirk, Jet noise: acoustic analogy informed by large eddy simulation. AIAA J. 48(7), 1312–1325 (2010)

    Article  Google Scholar 

  19. J. Kim, On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421–451 (1989)

    Article  Google Scholar 

  20. D. Lecoq, C. Pézerat, J.-H. Thomas, W.P. Bi, Extraction of the acoustic component of turbulent flow exciting a plate by inverting the vibration problem. J. Sound Vib. 333(2), 2505–92519 (2014)

    Article  Google Scholar 

  21. Y. Na, P. Moin, Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379–405 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. L.J. Peltier, S.A. Hambric, Estimating turbulent boundary layer wall pressure spectra from CFD RANS solutions. J. Fluids Struct. 23, 920–937 (2007)

    Article  Google Scholar 

  23. G. Robert, Experimental data base for the pressure gradient effect, EU Contract ENABLE, G4RD-CT-2000-00223 (2002)

    Google Scholar 

  24. Y. Rozenberg, G. Robert, S. Moreau, Wall pressure spectral model including the adverse pressure gradient effects. AIAA J. 50(10), 2168–2179 (2012)

    Article  Google Scholar 

  25. E. Salze, C. Bailly, O. Marsden, E. Jondeau, D. Juvé, An experimental characterization of wall pressure wavevector-frequency spectra in the presence of pressure gradients. In: 20th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2014–2909 (2014)

    Google Scholar 

  26. H.H. Schloemer, Effects of pressure gradients on turbulent boundary layer wall pressure fluctuations. J. Acoust. Soc. Am. 43(1), 93–113 (1967)

    Article  Google Scholar 

  27. A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  Google Scholar 

  28. C.K. Tam, L. Auriault, Jet mixing noise from fine scale turbulence. AIAA J. 37(2), 145–153 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors have benefited from fruitful discussions with and inputs by Christophe Bailly, Xavier Gloerfelt and Gilles Robert. This work was performed within the framework of the Labex CeLyA of Université de Lyon, operated by the French National Research Agency (ANR-10-LABX-0060/ANR-11-IDEX-0007). Financial support of Marion Berton by DCNS Research is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Juvé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Juvé, D., Berton, M., Salze, E. (2015). Spectral Properties of Wall-Pressure Fluctuations and Their Estimation from Computational Fluid Dynamics. In: Ciappi, E., De Rosa, S., Franco, F., Guyader, JL., Hambric, S. (eds) Flinovia - Flow Induced Noise and Vibration Issues and Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-09713-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09713-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09712-1

  • Online ISBN: 978-3-319-09713-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics