Skip to main content

Distributed Approximation of Minimum Routing Cost Trees

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8576))

Abstract

We study the NP-hard problem of approximating a Minimum Routing Cost Spanning Tree in the message passing model with limited bandwidth (CONGEST model). In this problem one tries to find a spanning tree of a graph G over n nodes that minimizes the sum of distances between all pairs of nodes. In the considered model every node can transmit a different (but short) message to each of its neighbors in each synchronous round. We provide a randomized (2 + ε)-approximation with runtime \(\mathcal{O}(D+\frac{\log n}{\varepsilon})\) for unweighted graphs. Here, D is the diameter of G. This improves over both, the (expected) approximation factor \(\mathcal{O}(\log n)\) and the runtime \(\mathcal{O}(D\log^2 n)\) stated in [13].

Due to stating our results in a very general way, we also derive an (optimal) runtime of \(\mathcal{O}(D)\) when considering \(\mathcal{O}(\log n)\)-approximations as in [13]. In addition we derive a deterministic 2-approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1996, Burlington, Vermont, USA, October 14-16, pp. 184–193 (1996)

    Google Scholar 

  2. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Vitter, J.S. (ed.) Proceedings of the 30th Annual ACM Symposium on Theory of Computing, STOC 1998, Dallas, Texas, USA, May 23-26, pp. 161–168 (1998)

    Google Scholar 

  3. Campos, R., Ricardo, M.: A fast algorithm for computing minimum routing cost spanning trees. Computer Networks 52(17), 3229–3247 (2008)

    Article  MATH  Google Scholar 

  4. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic approximation algorithms for group steiner trees and k-median. In: Vitter, J.S. (ed.) Proceedings of the 30th Annual ACM Symposium on Theory of Computing, STOC 1998, Dallas, Texas, USA, May 23-26, pp. 114–123 (1998)

    Google Scholar 

  5. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM Journal on Computing 41(5), 1235–1265 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dionne, R., Florian, M.: Exact and approximate algorithms for optimal network design. Networks 9(1), 37–59 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Larmore, L.L., Goemans, M.X. (eds.) Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, San Diego, California, USA, June 9-11, pp. 448–455 (2003)

    Google Scholar 

  8. Hochuli, A., Holzer, S., Wattenhofer, R.: Distributed approximation of minimum routing cost trees. Computing Research Repository CoRR, abs/1406.1244 (2014), http://arxiv.org/abs/1406.1244

  9. Holzer, S., Peleg, D., Roditty, L., Tal, E., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications (2014), http://www.dcg.ethz.ch/~stholzer/APSP-full.pdf , preliminary full version of two merged papers to be submitted to a journal). New versions available on request

  10. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: Kowalski, D., Panconesi, A. (eds.) Proceedings of the 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2012, Funchal, Madeira, Portugal, July 16-18, pp. 355–364 (2012)

    Google Scholar 

  11. Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Computing 3(3), 188–195 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of the network design problem. Networks 8(4), 279–285 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed approximation algorithms via probabilistic tree embeddings. In: Bazzi, R.A., Patt-Shamir, B. (eds.) Proceedings of the 27th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Ontario, August 18-21, pp. 263–272 (2008)

    Google Scholar 

  14. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths. To appear in: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC 2014, New York, USA, May 31-June 3 (2014)

    Google Scholar 

  15. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  16. Peleg, D.: Low stretch spanning trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Reshef, E.: Approximating minimum communication cost spanning trees and related problems. Master’s thesis, Weizmann Institute of Science, Rehovot, Israel (1999)

    Google Scholar 

  18. Scott, A.J.: The optimal network problem: Some computational procedures. Transportation Research 3(2), 201–210 (1969)

    Article  Google Scholar 

  19. Wikipedia. Bridging (networking) (April 28, 2014), http://en.wikipedia.org/wiki/Bridging_(networ king)

    Google Scholar 

  20. Wong, R.T.: Worst-case analysis of network design problem heuristics. SIAM Journal of Algebraic Discrete Methods 1(1), 51–63 (1980)

    Article  MATH  Google Scholar 

  21. Wu, B.Y., Chao, K.-M., Tang, C.Y.: Approximation algorithms for the shortest total path length spanning tree problem. Discrete Applied Mathematics 105(1), 273–289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.-M., Ravi, R., Tang, C.Y.: A polynomial-time approximation scheme for minimum routing cost spanning trees. SIAM Journal on Computing 29(3), 761–778 (1999)

    Article  MathSciNet  Google Scholar 

  23. Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum routing cost spanning trees. Journal of Algorithms 44(2), 359–378 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hochuli, A., Holzer, S., Wattenhofer, R. (2014). Distributed Approximation of Minimum Routing Cost Trees. In: Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 8576. Springer, Cham. https://doi.org/10.1007/978-3-319-09620-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09620-9_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09619-3

  • Online ISBN: 978-3-319-09620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics