Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 12))

Abstract

The chapter is an overview of our finding on a novel class of regular automata networks, the phyllosilicate automata. Phyllosilicate is a sheet of silicate tetrahedra bound by basal oxygens. A phyllosilicate automaton is a regular network of finite state machines, which mimics structure of the phyllosilicate. A node of a binary state phyllosilicate automaton takes states 0 and 1. A node updates its state in discrete time depending on a sum of states of its three (silicon nodes) or six (oxygen nodes) closest neighbours. By extensive sampling of the node state transition rule space we classify rules by main types of patterns generated by them based on the patterns shape (convex and concave hulls, almost circularly growing patterns, octagonal patterns, dendritic growth); and, the patterns interior (disordered, solid, labyrinthine). We also present rules exhibiting travelling localizations attributed to Conway’s Game of Life: gliders, oscillators, still lifes, and a glider gun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Identification of Cellular Automata. Taylor and Francis (1994)

    Google Scholar 

  2. Adamatzky, A. (ed.): Collision-Based Computing. Elsevier (2002)

    Google Scholar 

  3. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction Diffusion Computers. Elsevier (2005)

    Google Scholar 

  4. Adamatzky, A., Martinez, G.J., Mora, J.C.S.T.: Phenomenology of reaction diffusion binary-state cellular automata. Int. J. Bifurcation and Chaos 16, 2985–3005 (2007)

    Article  Google Scholar 

  5. Adamatzky, A., Chua, L.: Phenomenology of retained refractoriness: On semi-memristive discrete media. Int. J. Bifurcation and Chaos 22, 1230036 (2012)

    Article  MathSciNet  Google Scholar 

  6. Adamatzky, A.: Reaction-Diffusion Automata. Springer (2012)

    Google Scholar 

  7. Adamatzky, A.: On binary-state phyllosilicate automata. Int. J. Bifurcation and Chaos (2013)

    Google Scholar 

  8. Adamatzky, A.: On oscillators in phyllosilicate excitable automata. Int. J. Mod. Phys. C 24, 1350034 (2013) (10 pages)

    Google Scholar 

  9. Adamatzky, A.: Game of Life on Phyllosilicates: Gliders, Oscillators and Still Life. Physics Letters A 377, 1597–1605 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ballantine, J.A., Purnell, J.H., Thomas, J.M.: Sheet silicates: broad spectrum catalysts for organic synthesis. J. Molecular Catalysis 27, 157–167 (1984)

    Article  Google Scholar 

  11. Bandyopadhyay, A., Pati, R., Sahu, S., Peper, F., Fujita, D.: Massively parallel computing on an organic molecular layer. Nature Physics 6, 369–375 (2010)

    Google Scholar 

  12. Adamatzky, A.: Molecular computing: Aromatic arithmetic. Nature Nature Physics 6, 325–326 (2010)

    Article  Google Scholar 

  13. Adamatzky, A., Chua, L.: Memristive excitable cellular automata. Int. J. Bifurcation and Chaos 21, 3083 (2011)

    Article  MATH  Google Scholar 

  14. Bays, C.: The discovery of glider guns in a Game of Life for the triangular tessellation. J. Cellular Automata 2(4), 345–350 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Bergaya, F., Theng, B.G.K., Lagaly, G. (eds.): Handbook of Clay Science. Elsevier (2006)

    Google Scholar 

  16. Bleam, W.: Atomic theories of phyllosilicates: Quantum chemistry, statistical mechanics, electrostatic theory, and crystal chemistry. Reviews Geophysics 31(1), 51–73 (1993)

    Article  Google Scholar 

  17. Bulatov, V.V., Justo, J.F., Wei Cai, S., Yip, A.S., Argon, T., Lenosky, M., de la Rubia, T.D.: Parameter-free Modeling of Dislocation Motion: The Case of Silicon. Philosophical Magazine A 81, 1257–1281 (2001)

    Article  Google Scholar 

  18. Carrado, K.A., Macha, S.M., Tiede, D.M.: Effects of surface functionalization and organo-tailoring of synthetic layer silicates on the immobilization of cytochrome c. Chem. Mater. 16, 2559–2566 (2004)

    Article  Google Scholar 

  19. Clarridge, A.G., Salomaa, K.: An improved cellular automata based algorithm for the 45-Convex hull problem. Journal of Cellular Automata 5, 107–112 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Field, R.J., Noyes, R.M.: Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Google Scholar 

  21. Goucher, A.P.: Gliders in cellular automata on Penrose tilings. J. Cellular Automata (2012) (in Press)

    Google Scholar 

  22. Greenberg, J., Hastings, S.: Spatial patterns for discrete models of diffusion in excitable media. SIAM J. Applied Math. 34, 515–523 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Griffen, D.T.: Silicate Crystal Chemistry. Oxford University Press (1992)

    Google Scholar 

  24. Janavicus, A.J., Storasta, J., Purlys, R., Mekys, A., Balakauskas, S., Norgela, Z.: Crystal lattice and carriers hall mobility relaxation processes in Si crystal irradiated by soft X-rays. Acta Physica Polonica 112, 55–67 (2007)

    Google Scholar 

  25. Lehmann, T., Wolff, T., Hamel, C., Veit, P., Garke, B., Seidel-Morgenstern, A.: Physico-chemical characterization of Ni/MCM-41 synthesized by a template ion exchange approach. Microporous and Mesoporous Materials 151, 113–125 (2012)

    Article  Google Scholar 

  26. Liebau, F.: Structural Chemistry of Silicates: Structure, Bonding, and Classification. Springer (1985)

    Google Scholar 

  27. Law, M.E., Gilmer, G.H., Jaraíz, M.: Simulation of defects and diffusion phenomena in silicon. MRS Bulletin, 46–51 (June 2000)

    Google Scholar 

  28. Margenstern, M.: New Tools for Cellular Automata in the Hyperbolic Plane. J. UCS 6(12), 1226–1252 (2000)

    MATH  MathSciNet  Google Scholar 

  29. Margenstern, M.: A universal cellular automaton on the heptagrid of the hyperbolic plane with four states. Theor. Comput. Sci. 412(1-2), 33–56 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Margenstern, M.: Universal Cellular Automata with Two States in the Hyperbolic Plane. J. Cellular Automata 7(3), 259–284 (2012)

    MATH  MathSciNet  Google Scholar 

  31. Margenstern, M.: Universality and the Halting Problem for Cellular Automata in Hyperbolic Spaces: The Side of the Halting Problem. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 12–33. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Margenstern, M.: Small Universal Cellular Automata in Hyperbolic Spaces: A Collection of Jewels. Springer (2013)

    Google Scholar 

  33. McDonald, A., Scott, B., Villemure, G.: Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate. Microporous and Mesoporous Materials 120, 263–266 (2009)

    Article  Google Scholar 

  34. Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., Chmelka, B.F.: Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299–1303 (1993)

    Article  Google Scholar 

  35. Owens, N., Stepney, S.: Investigations of Game of Life cellular automata rules on Penrose tilings: Lifetime, ash, and oscillator Statistics. J. Cellular Automata 5, 207–225 (2010)

    MATH  MathSciNet  Google Scholar 

  36. Pauling, L.: The structure of the micas and related minerals. Proc. Natl. Acad. Sci. U.S.A. 16, 123–129 (1930)

    Article  Google Scholar 

  37. Pizzagalli, L., Godet, J., Guenole, J., Brochard, S.: Dislocation cores in silicon: new aspects from numerical simulations. Journal of Physics: Conference Series 281, 012002 (2011)

    Google Scholar 

  38. Richardson, I.G.: The calcium silicate hydrates. Cement and Concrete Research 38, 137–158 (2008)

    Article  Google Scholar 

  39. Sokolski, M.M.: Structure and kinetics of defects in silicon. NASA TN D-4154, Washington (1967)

    Google Scholar 

  40. Specht, K.M., Jackson, M., Sunkel, B., Boucher, M.A.: Synthesis of a functionalized sheet silicate derived from apophyllite and further modification by hydrosilylation. Applied Clay Science 47, 212–216 (2010)

    Article  Google Scholar 

  41. Suh, W.H., Suslick, K.S., Stucky, G.D., Suh, Y.-H.: Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology 87, 133–170 (2009)

    Article  Google Scholar 

  42. Tanimura, K., Tanaka, T., Itoh, N.: Creation of quasistable lattice defects by electronic excitation in SiO2. Phys. Rev. Lett. 51, 423–426 (1983)

    Article  Google Scholar 

  43. Torbey, S., Akl, S.G.: An exact solution to the two-dimensional arbitrary-threshold density classification problem. Journal of Cellular Automata 4, 225–235 (2009)

    MATH  MathSciNet  Google Scholar 

  44. Velichko, O.I., Dobrushkin, V.A., Muchynski, A.N., Tsurko, V.A., Zhuk, V.A.: Simulation of coupled diffusion of impurity atoms and point defects under nonequilibrium conditions in local domain. J. Comput Physics 178, 196–209 (2002)

    Article  MATH  Google Scholar 

  45. Watkins, G.D.: Lattice vacancies and interstitials in silicon. Proc. of the US-ROC Solid State Physics Seminar. Chinese, J. Physics 15, 92–102 (1977)

    Google Scholar 

  46. Watkins, G.D.E.: studies of lattice defects in semiconductors. In: Henderson, B., Hughes, A.E. (eds.) Defects and Their Structure in Non-metallic Solids, p. 203. Plenum Press, New York (1976)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adamatzky, A. (2015). Phyllosilicate Automata. In: Adamatzky, A. (eds) Automata, Universality, Computation. Emergence, Complexity and Computation, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-09039-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09039-9_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09038-2

  • Online ISBN: 978-3-319-09039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics