Skip to main content

Fundamentals

  • Chapter
  • First Online:
Wildland Fuel Fundamentals and Applications
  • 864 Accesses

Abstract

Since the physical description and characterization of fuels are primarily for fire behavior and effects prediction, it is important to have working knowledge of fire modeling science. The important wildland fuel properties are discussed in the context of their use in fire prediction modeling.

Fire’s the sun, unwindin’ itself out o’ the wood

David Mitchell, author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. Forest Ecol Manage 211:83–96

    Article  Google Scholar 

  • Albini FA (1976) Estimating wildfire behavior and effects. USDA Forest Service, Intermountain Research Station, General Technical Report INT-30. Ogden, UT, 23 pp

    Google Scholar 

  • Alexander ME (2014) Part 4: the science and art of wildland fire behaviour prediction. In: Scott AC, Bowman DMJS, Bond WJ, Pyne SJ, Alexander ME (eds) Fire on earth: an introduction. Wiley-Blackwell, Chichester

    Google Scholar 

  • Anderson HE (1969) Heat transfer and fire spread. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-69. Ogden, UT., USA, 20 pp

    Google Scholar 

  • Andrews PL (1986) BEHAVE: fire behavior prediction and fuel modeling system—BURN subsystem. USDA Forest Service, Intermountain Research Station, Research Paper INT-194. Ogden UT, USA, 130 pp

    Google Scholar 

  • Andrews PL (2014) Current status and future needs of the behave plus fire modeling system. Int J Wildland Fire 23(1):21–33

    Article  Google Scholar 

  • Andrews PL, Rothermel RC (1982) Charts for interpreting wildland fire behavior characteristics. US Forest Service, Intermountain Forest and Range experiment station, General Technical Report INT-131. Ogden, UT, USA, 23 pp

    Google Scholar 

  • Barrows JS (1951) Fire behavior in northern Rocky Mountain forests. Northern Rocky Mountain Forest & Range Experiment Station, Paper 29, 274 pp

    Google Scholar 

  • Bebi P, Kulakowski D, Veblen TT (2003) Interactions between fire and spruce beetles in a subalpine rocky mountain forest landscape. Ecology 84(2):362–371 doi:10.1890/0012-9658(2003)084[0362:ibfasb]2.0.co;2

    Article  Google Scholar 

  • Brown AA, Davis K (1973) Forest fire control and use, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Brown JK (1970a) A method for inventorying downed woody fuel. USDA Forest Service, Intermountain Research Station, General Technical Report INT-16. Ogden, UT, 16 pp

    Google Scholar 

  • Brown JK (1970b) Ratios of surface area to volume for common fire fuels. Forest Sci 16:101–105

    Google Scholar 

  • Burgan RE (1987) Concepts and interpreted examples in advanced fuel modeling. USDA Forest Service, Intermountain Research Station, General Technical Report INT-238. Ogden, UT, USA, 40 pp

    Google Scholar 

  • Byram GM (1958) Some basic thermal processes controlling the effects of fire on living vegetation. USDA Forest Service Southeastern Forest Experiment Station, Research Note 114. Asheville, NC, USA, 2 pp

    Google Scholar 

  • Byram GM (1959) Combustion of forest fuels. In: Brown KP (ed) Forest fire: control and use. McGraw-Hill, New York, p 584

    Google Scholar 

  • Campbell GS, Jungbauer JD, Bristow KL, Hungerford RD (1995) Soil temperature and water content beneath a surface fire. Soil Sci W 159(6):363–374

    Article  CAS  Google Scholar 

  • Canham CD, Loucks OL (1984) Catastrophic windthrow in the presettlement forests of Wisconsin. Ecology 65(3):803–809. doi:10.2307/1938053

    Article  Google Scholar 

  • Catchpole WR, Catchpole EA, Butler BW, Rothermel RC, Morris GA, Latham DJ (1998) Rate of spread of free-burning fires in woody fuels in a wind tunnel. Combust Sci Technol 131:1–37

    Article  CAS  Google Scholar 

  • Countryman CM (1969) Fuel evaluation for fire control and fire use. Paper presented at the Symposium on fire ecology and control and use of fire in wildland management, Tucson, AZ, 1969

    Google Scholar 

  • Curry JR, Fons WL (1938) Rate of spread of surface fires in the Ponderosa pine type of California. J Agr Res 57(4):239–267

    Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effect on ecosystems. Wiley, New York

    Google Scholar 

  • Deeming JE, Burgan RE, Cohen JD (1977) The National fire danger rating system—1978. USDA Forest Service Intermountain Forest and Range Experiment Station, General Technical Report INT-39. Ogden, Utah, USA, 63 pp

    Google Scholar 

  • Finney MA (1998) FARSITE: Fire area simulator—model development and evaluation. United States Department of Agriculture, Forest Service Rocky Mountain Research Station, Research Paper RMRS-RP-4. Fort Collins, CO. USA, 47 pp

    Google Scholar 

  • Finney MA, Cohen JD, McAllister SS, Jolly WM (2013) On the need for a theory of wildland fire spread. Int J Wildland Fire 22(1):25–36

    Article  Google Scholar 

  • Fons WL (1946) Analysis of fire spread in light forest fuels. J Agr Res 73(3):93–121

    Google Scholar 

  • Frandsen WH, Andrews PL (1979) Fire behavior in nonuniform fuels. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-232. Ogden, UT, USA, 34 pp

    Google Scholar 

  • Giménez A, Pastor E, Zárate L, Planas E, Arnaldos J (2004) Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations. Int J Wildland Fire 13(1):1–15

    Article  Google Scholar 

  • Gisborne HT (1927) The objectives of forest fire-weather research. J Forest 25(4):452–456

    Google Scholar 

  • Gisborne HT (1947) Fundamentals of fire behavior. Fire Control Notes 9(1):13–24

    Google Scholar 

  • Hawley LF (1926) Theoretical considerations regarding factors which influence forest fires. J Forest 24(7):756–763

    Google Scholar 

  • Jensen ME, Hann WJ, Keane RE, Caratti J, Bourgeron PS (1993) ECODATA—A multiresource database and analysis system for ecosystem description and evaluation. In: Jensen MEaPBE (ed) Eastside forest ecosystem health assessment volume II—ecosystem mangement: principles and applications, 1993. USDA Forest Service Pacific Northwest Research Station General Technical Report PNW-GTR-318, pp 203–217

    Google Scholar 

  • Keane R, Gray K, Bacciu V, Leirfallom S (2012a) Spatial scaling of wildland fuels for six forest and rangeland ecosystems of the northern Rocky Mountains, USA. Landscape Ecol 27(8):1213–1234. doi:10.1007/s10980-012-9773-9

    Google Scholar 

  • Keane RE, Finney MA (2003) The simulation of landscape fire, climate, and ecosystem dynamics. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and global change in temperate ecosystems of the western Americas, vol Ecological Studies vol 160. Springer-Verlag, New York, pp 32–68

    Chapter  Google Scholar 

  • Keane RE, Dickinson LJ (2007) The Photoload sampling technique: estimating surface fuel loadings using downward looking photographs. USDA Forest Service Rocky Mountain Research Station, General Technical Report RMRS-GTR-190. Fort Collins, CO, 44 pp

    Google Scholar 

  • Keane RE, Gray K (2013) Comparing three sampling techniques for estimating fine woody down dead biomass. Int J Wildland Fire 22(8):1093–1107

    Article  Google Scholar 

  • Keane RE, Drury SA, Karau EC, Hessburg PF, Reynolds KM (2010) A method for mapping fire hazard and risk across multiple scales and its application in fire management. Ecol Model 221:2–18

    Article  Google Scholar 

  • Keane RE, Gray K, Bacciu V (2012b) Spatial variability of wildland fuel characteristics in northern rocky mountain ecosystems. USDA Forest Service Rocky Mountain Research Station, Research Paper RMRS-RP-98 Fort Collins, Colorado USA, 58 pp

    Google Scholar 

  • Kelsey RG, Shafizadeh F, Lowery DP (1979) Heat content of bark, twigs, and foliage of nine species of western conifers. U.S. Department of Agriculture, Forest Service, Intermountain Research Station Research Note INT-261. Ogden, UT, 7 pp

    Google Scholar 

  • Linn RR (1997) A transport model for prediction of wildfire behavior. Ph. D. dissertation, New Mexico State University, Las Cruces, New Mexico, USA

    Google Scholar 

  • Liodakis S, Bakirtzis D, Dimitrakopoulos A (2002) Ignition characteristics of forest species in relation to thermal analysis data. Thermochim Acta 390(1–2):83–91

    Article  CAS  Google Scholar 

  • Mitchell SJ (2013) Wind as a natural disturbance agent in forests: a synthesis. Forestry 86(2):147–157. doi:10.1093/forestry/cps058

    Article  Google Scholar 

  • Moritz MA, Morais ME, Summerell LA, Carlson JM, Doyle J (2005) Wildfires, complexity, and highly optimized tolerance. Proc Natl Acad Sci 102(50):17912–17917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ottmar RD, Sandberg DV, Riccardi CL, Prichard SJ (2007) An overview of the fuel characteristic classification system—quantifying, classifying, and creating fuelbeds for resource planning. Can J Forest Res 37:2383–2393

    Article  Google Scholar 

  • Parsons RA, Mell WE, McCauley P (2010) Linking 3D spatial models of fuels and fire: effects of spatial heterogeneity on fire behavior. Ecol Model 222(3):679–691

    Article  Google Scholar 

  • Philpot CW (1969) Seasonal changes in heat content and ether extractive content of chamise. U.S. Department of Agriculture, Forest Service, Intermountain Research Station Research Paper INT-61. Ogden, UT, 10 pp

    Google Scholar 

  • Philpot CW (1970) Influence of mineral content on the pyrolysis of plant materials. Forest Sci 16(4):461–471

    CAS  Google Scholar 

  • Pyne SJ (2001) The fires this time, and next. Science 294:1005–1006

    Article  CAS  PubMed  Google Scholar 

  • Pyne SJ, Andrews PL, Laven RD (1996) Introduction to wildland fire, 2nd edn. Wiley, New York

    Google Scholar 

  • Ragland KW, Aerts DJ, Baker AJ (1991) Properties of wood for combustion analysis. Bioresource Technol 37(2):161–168

    Article  CAS  Google Scholar 

  • Reinhardt E, Dickinson M (2010) First-order fire effects models for land management: overview and issues. Fire Ecol 6(1):131–142

    Article  Google Scholar 

  • Reinhardt E, Keane RE, Brown JK (1997) First order fire effects model: FOFEM 4.0 user’s guide. USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-344, 65 pp

    Google Scholar 

  • Reinhardt ED, Keane RE, Brown JK (2001) Modeling fire effects. Int J Wildland Fire 10:373–380

    Article  Google Scholar 

  • Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115, Ogden, Utah, 88 pp

    Google Scholar 

  • Rothermel RC, Deeming JE (1980) Measuring and interpreting fire behaviour for correlation with fire effects. US Forest Service Intermountain Forest and Range Experiment Station, General Technical Report 93, Ogden, UT, 8 pp

    Google Scholar 

  • Sandberg DV, Riccardi CL, Schaaf MD (2007) Reformulation of Rothermel’s wildland fire behaviour model for heterogeneous fuelbeds. Can J Forest Res 37(12):2438–2455

    Article  Google Scholar 

  • Scott J, Burgan RE (2005) A new set of standard fire behavior fuel models for use with Rothermel’s surface fire spread model. USDA Forest Service Rocky Mountain Research Station, General Technical Report RMRS-GTR-153. Fort Collins, CO, 66 pp

    Google Scholar 

  • Shafizadeh F, Chin PPS, DeGroot WF (1977) Effective heat content of green forest fuels. Forest Sci 23(1):81–89

    Google Scholar 

  • Sikkink PG, Keane RE (2008) A comparison of five sampling techniques to estimate surface fuel loading in montane forests. Int J Wildland Fire 17(3):363–379. doi:10.1071/Wf07003

    Article  Google Scholar 

  • Sullivan AL (2009a) Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models. Int J Wildland Fire 18(4):349–368

    Google Scholar 

  • Sullivan AL (2009b) Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models. Int J Wildland Fire 18(4):369–386

    Google Scholar 

  • Susott RA, DeGroot WF, Shafizadeh F (1975) Heat content of natural fuels. J Fire Flammability 6:311–325

    Google Scholar 

  • Thomas PH (1953) Effects of fuel geometry in fires. Building Research Establishment Current Paper. Department of the Environment, Building Research Establishment, Borehamwood, 15 pp

    Google Scholar 

  • Trakhtenbrot A, Katul GG, Nathan R (2014) Mechanistic modeling of seed dispersal by wind over hilly terrain. Ecol Model 274(0):29–40

    Article  Google Scholar 

  • Van Wagner CE (1983) Fire behaviour in northern conifer forests and shrublands. In: Wein RW, MacLean DA (eds) The role of fire in northern circumpolar ecosystems. Wiley, Chichester, pp 65–80

    Google Scholar 

  • Weikert RM, Wedler M, Lippert M, Schramel P, Lange OL (1989) Photosynthetic performance, chloroplast pigments, and mineral content of various needle age classes of spruce (Picea abies) with and without the new flush: an experimental approach for analysing forest decline phenomena. Trees 3(3):161–172. doi:10.1007/bf00226652

    Article  Google Scholar 

  • Whelan RJ (1995) The Ecology of Fire. Cambridge studies in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Zhou XY, Mahalingam S (2001) Evaluation of reduced mechanism for modeling combustion of pyrolysis gas in wildland fire. Combust Sci Technol 171:39–70. doi:10.1080/00102200108907858

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Keane .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keane, R. (2015). Fundamentals. In: Wildland Fuel Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-09015-3_2

Download citation

Publish with us

Policies and ethics