Skip to main content

Functional Organization of Circadian Timing System of a Diurnal Primate (Marmoset)

  • Chapter
  • First Online:
Mechanisms of Circadian Systems in Animals and Their Clinical Relevance

Abstract

Today it is recognized that changes in circadian rhythmicity can cause cardiovascular disorders, digestive disorders, and endocrine disorders, as well as psychiatric disorders. Such evidence of the relevance of circadian rhythmicity and the changes of this rhythmicity to human health is generally derived from temporal challenges that the human organism faces in today’s society. Thus, knowledge of functional mechanisms of circadian rhythmicity regulation is important so we can clinically intervene in the intrinsic disorders of circadian rhythmicity as well as for its application in medicine, both for diagnosis and at the therapeutic level. The most studied animal models are the rodents, which have nocturnal habits and polyphasic sleep, indicating the need for an animal model that is diurnal and presents monophasic sleep, more similar to humans, such as the marmoset, Callithrix jacchus. In this chapter we describe in detail the recent experimental findings produced in our laboratory and reported in the scientific literature, which allow us to propose the marmoset as a potential model for the study of circadian rhythmicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DH, Barnett DK, Colman RJ et al (2003) Aspects of common marmoset basic biology and life history important for biomedical research. Comp Med 53:339–350

    PubMed  CAS  Google Scholar 

  • Aujard F, Séguy M, Terrien J et al (2006) Behavioral thermoregulation in a non human primate: effects of age and photoperiod on temperature selection. Exp Gerontol 41:784–792

    Article  PubMed  Google Scholar 

  • Barros M, Tomaz C (2002) Non-human primate models for investigating fear and anxiety. Neurosci Biobehav Rev 26:187–201

    Article  PubMed  Google Scholar 

  • Bezerra BM, Souto A (2008) Structure and usage of the vocal repertoire of Callithrix jacchus. Int J Primatol 29:671–701

    Article  Google Scholar 

  • Carrijo C (2013) Influência de fotoperíodo artificial no comportamento de um primata neotropical diurno (Callithrix jacchus). Dissertation, Universidade Federal do Rio Grande do Norte

    Google Scholar 

  • Castro CSS, Menezes AL, Moreira LFS (2003) Locomotor activity rhythm in free-ranging common marmosets (Callithrix jacchus). Biol Rhythm Res 34:23–30

    Article  Google Scholar 

  • Cayetanot F, Van Someren EJ, Perret M et al (2005) Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J Biol Rhythms 20:461–469

    Article  PubMed  CAS  Google Scholar 

  • Chung JK, Lee KY, Kim SH et al (2012) Circadian rhythm characteristics in mood disorders: comparison among bipolar I disorder, bipolar II disorder and recurrent major depressive disorder. Clin Psychopharmacol Neurosci 10:110–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Cilia J, Piper DC (1997) Marmoset conspecific confrontation: an ethologically-based model of anxiety. Pharmacol Biochem Behav 58:85–91

    Article  PubMed  CAS  Google Scholar 

  • Crofts HS, Wilson S, Muggleton NG et al (2001) Investigation of the sleep electrocorticogram of the common marmoset (Callithrix jacchus) using radiotelemetry. Clin Neurophysiol 112:2265–2273

    Article  PubMed  CAS  Google Scholar 

  • Cross N, Rogers LJ (2004) Diurnal cycle in salivary cortisol levels in common marmoset. Dev Psychobiol 45:134–139

    Article  PubMed  CAS  Google Scholar 

  • Di Bitetti MS, Janson CH (2000) When will the stork arrive? Patterns of birth seasonality in neotropical primates. Am J Primatol 50:109–130

    Article  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  PubMed  CAS  Google Scholar 

  • Egler SG (2000) Ecologia alimentar e sazonalidade em primatas neotropicais: gênero Marmosetnus. In: Alonso C, Langguth A (eds) A Primatologia no Brasil, vol 7. EDUPB/SBPr, João Pessoa, pp 81–95

    Google Scholar 

  • Erkert HG (1989) Characteristics of the circadian activity rhythm in common marmosets (Callithrix J. jacchus). Am J Primatol 17:271–286

    Article  Google Scholar 

  • Erren TC (2013) Shift work and cancer research: can chronotype predict susceptibility in night-shift and rotating-shift workers? Occup Environ Med 70:283–284

    Article  PubMed  Google Scholar 

  • Fernandez-Duque E, Rotundo M, Ramírez-Llorens P (2002) Environmental determinants of birth seasonality in night monkeys (Aotus azarai) of the Argentinean Chaco. Int J Primatol 23:639–656

    Article  Google Scholar 

  • Glass JD, Tardif SD, Clements R et al (2001) Photic and nonphotic circadian phase resetting in a diurnal primate, the common marmoset. Am J Physiol Reg Int Comp Physiol 280:191–197

    Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves F, Belísio AS, Azevedo CVM (2009) Effects of nest box availability on the circadian rhythm of common marmosets (Callithrix jacchus). Folia Primatol 80:175–188

    Article  PubMed  Google Scholar 

  • Hearn JP, Webley GE (1987) Regulation of the corpus luteum of early pregnancy in the marmoset monkey: local interactions of luteotrophic and luteolytic hormones in vivo and their effects on the secretion of progesterone. J Endocrinol 114:231–239

    Article  PubMed  CAS  Google Scholar 

  • Hill RA, Barrett L, Gaynor D et al (2003) Day length, latitude and behavioural (in)flexibility in baboons (Papio cynocephalus ursinus). Behav Ecol Sociobiol 53:278–286

    Google Scholar 

  • Hoffmann K, Coolen A, Schlumbohm C et al (2012) Remote long-term registrations of sleep-wake rhythms, core body temperature and activity in marmoset monkeys. Behav Brain Res 235:123–133

    Article  Google Scholar 

  • Kolla BP, Auger RR (2011) Jet lag and shift work sleep disorders: how to help reset the internal clock. Cleve Clin J Med 78:675–684

    Article  PubMed  Google Scholar 

  • Lampert RMS, Azevedo CVM, Menezes AAL (2011) Influence of different light intensities on the daily grooming distribution of common marmosets Callithrix jacchus. Folia Primatol 82:131–142

    Article  PubMed  Google Scholar 

  • Lee A, Galvez JC (2012) Jet lag in athletes. Sports Health 4:211–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludlage E, Mansfield K (2003) Clinical care and disease of the common marmosets (Callithrix jacchus). Comp Med 54:369–382

    Google Scholar 

  • Mansfield K (2003) Marmoset models commonly used in biomedical research. Comp Med 53:383–392

    PubMed  CAS  Google Scholar 

  • Marcheva B, Ramsey KM, Peek CB et al (2013) Circadian clocks and metabolism. Handb Exp Pharmacol 217:127–155

    Article  PubMed  Google Scholar 

  • McClung CA (2013) How might circadian rhythms control mood? Let me count the ways…. Biol Psychiatry. doi:10.1016/j.biopsych.2013.02.019

    PubMed  PubMed Central  Google Scholar 

  • McNees DW, Lewis RW, Ponzio BJ et al (1984) Blood chemistry of the common marmoset (Callithrix jacchus) maintained in an indoor-outdoor environment: primate comparisons. Primates 25:103–109

    Article  CAS  Google Scholar 

  • Melo PR, Belísio AS, Menezes AAL et al (2010) Influence of seasonality on circadian motor activity rhythm in common marmosets during puberty. Chronobiol Int 27:1420–1437

    Article  PubMed  Google Scholar 

  • Mendes N, Huber L (2004) Object permanence in common marmosets (Callithrix jacchus). J Comp Psychol 118:103–112

    Article  PubMed  Google Scholar 

  • Mendes ALB, Menezes AAL, Azevedo CVM (2008) The influence of social cues on circadian activity rhythm resynchronization to the light-dark cycle in common marmosets Callithrix jacchus. Biol Rhythm Res 39:469–479

    Article  Google Scholar 

  • Menezes AAL, Moreira LFS, Azevedo CVM et al (1993) Behavioral rhythms in the captive common marmoset (Callithrix jacchus) under natural environmental conditions. Braz J Med Biol Res 26:741–745

    Google Scholar 

  • Menezes AAL, Moreira LFS, Menna-Barreto LS (1998) Annual variation in an ultradian component in the locomotor activity rhythm of the common marmoset (Callithrix jacchus). Biol Rhythm Res 29:556–562

    Article  Google Scholar 

  • Moreira LFS, Sousa MBC, Menezes AAL et al (1991) Ritmo circadiano da atividade motora do sagüi comum (Callithrix jacchus). A Primatologia no Brasil 3:25–33

    Google Scholar 

  • Muggleton NG, Smith AJ, Scott EA et al (2005) A long-term study of the effects of diazinon on sleep, the electrocorticogram and cognitive behaviour in common marmosets. J Psychopharmacol 19:455–466

    Article  PubMed  CAS  Google Scholar 

  • Musiek ES, Fitzgerald GA (2013) Molecular clocks in pharmacology. Handb Exp Pharmacol 217:243–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson RJ, Demas GE, Klein SL et al (2002) Seasonal patterns of stress, immune function and disease. Cambridge University Press, New York

    Book  Google Scholar 

  • Otalora BB, Vivanco P, Madariaga AM et al (2010) Internal temporal order in the circadian system of a dual-phasing rodent, the Octodon degus. Chronobiol Int 27:1564–1579

    Article  PubMed  CAS  Google Scholar 

  • Perret M (1997) Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus). J Biol Rhythms 12:136–145

    Article  PubMed  CAS  Google Scholar 

  • Perret M, Aujard F (2001) Daily hypothermia and torpor in a tropical primate: synchronization by 24-h light-dark cycle. Am J Physiol Reg Int Comp Physiol 281:R1925–R1933

    CAS  Google Scholar 

  • Perret M, Aujard F (2005) Aging and season affect plasma dehydroepiandrosterone sulfate (DHEA-S) levels in a primate. Exp Gerontol 40:582–587

    Article  PubMed  CAS  Google Scholar 

  • Perret M, Aujard F (2006) Vieillissement et rythmes biologiques chez les primates. Med Sci (Paris) 22:279–283

    Article  Google Scholar 

  • Perret M, Aujard F, Vannier G (1998) Influence of daylength on metabolic rate and daily water loss in the male prosimian primate Microcebus murinus. Comp Biochem Physiol A Mol Integr Physiol 119:981–989

    Article  PubMed  CAS  Google Scholar 

  • Philippens IH, Kersten CJ, Vanwersc RA et al (2004) Sleep and sleep EEG spectra in marmoset monkeys. Sleep Wake Res Neth 15:49–51

    Google Scholar 

  • Rylands AB, Mittermeier RA, de Oliveira MM et al (2008) Callithrix jacchus. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. www.iucnredlist.org

  • Rylands AB, Coimbra-Filho AF, Mittermeier RA (2009) The systematics and distribution of the marmosets (Callithrix, Calibella, Cebuella, and Mico) and Callimico (Callimico) (Callitrichidae, Primates). In: Ford SM, Porter LM, Davis LLC (eds) The smallest anthropoids: the marmoset/callimico radiation. Springer, Nova Iorque, pp 25–61

    Chapter  Google Scholar 

  • Sahar S, Sassone-Corsi P (2013) The epigenetic language of circadian clocks. Handb Exp Pharmacol 217:29–44

    Article  PubMed  Google Scholar 

  • Sasaki E, Suemizu H, Shimada A et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

    Article  PubMed  CAS  Google Scholar 

  • Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13:190–198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schilling A, Richard J, Servière J (1999) Duration of activity and period of circadian activity–rest rhythm in a photoperiod-dependent primate, Microcebus murinus. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie 322:759–770

    Google Scholar 

  • Schwartz WJ (2009) Circadian rhythms: a tale of two nuclei. Curr Biol 19:460–462

    Article  Google Scholar 

  • Silva MMA, Albuquerque AM, Araujo JF (2005) Light-dark cycle synchronization of circadian rhythm in blind primates. J Circad Rhythm 3:10–16

    Article  Google Scholar 

  • Smith D, Trennery P, Farningham D et al (2001) The selection of marmoset monkeys (Callithrix jacchus) in pharmaceutical toxicology. Lab Anim 35:117–130

    Article  PubMed  CAS  Google Scholar 

  • Sousa MBC, Peregrino HPA, Cirne MFC et al (1999a) Reproductive patterns and birth seasonality in a South-American breeding colony of common marmosets, Callithrix jacchus. Primates 40:327–336

    Article  Google Scholar 

  • Sousa MBC, Silva HPA, Vidal JF (1999b) Litter size does not interfere with fertility in common marmoset, Callithrix jacchus. Folia Primatol 70:41–46

    Article  PubMed  CAS  Google Scholar 

  • Spinelli S, Pennanen L, Dettling AC et al (2004) Performance of the marmoset monkey on computerized tasks of attention and working memory. Cogn Brain Res 19:123–137

    Article  Google Scholar 

  • Sri Kantha S, Suzuki J (2006) Sleep quantitation in common marmoset, cotton top tamarin and squirrel monkey by non-invasive actigraphy. Comp Biochem Physiol 144:203–210

    Article  Google Scholar 

  • Stellar E (1960) The marmoset as a laboratory animal: maintenance, general observations of behavior, and simple learning. J Comp Physiol Psychol 53:1–10

    Article  PubMed  CAS  Google Scholar 

  • Stevenson MF, Poole TB (1976) An ethogram of the common marmoset (Callithrix jacchus): general behavioural repertoire. Anim Behav 24:428–451

    Article  PubMed  CAS  Google Scholar 

  • Stevenson MF, Rylands AB (1988) The marmosets, genus Callithrix. In: Mittermeier AB, Rylands AT, Coimbra-Filho AF, Fonseca GAB (eds) Ecology and behavior of neotropical primates. World Wildlife Foundation, New York, pp 131–221

    Google Scholar 

  • Sulzman FM, Fuller CA, Moore-ede MC (1977) Spontaneous internal desynchronization of circadian rhythms in the squirrel monkey. Comp Biochem Physiol 58:63–67

    Article  Google Scholar 

  • Tardif SD, Mansfield KG, Ratnam R et al (2011) The marmoset as a model of aging and age-related diseases. ILAR J 52:54–65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tokura H, Aschoff J (1978) Circadian activity rhythms of the pig-tailed macaque, Macaca nemestrina, under constant illumination. Pflugers Arch 376:241–243

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet SAM, Jongsma MJ, Vanwersch RAP et al (2008) Efficacy of caffeine and modafinil in counteracting sleep deprivation in the marmoset monkey. Psychopharmacology 197:59–66

    Article  PubMed  CAS  Google Scholar 

  • Vilela SL, Faria DS (2004) Seasonality of the activity pattern of Callithrix penicillata (Primates, Callitrichidae) in the cerrado (scrub savanna vegetation). Braz J Biol 64:363–370

    Article  PubMed  CAS  Google Scholar 

  • Vivanco P, Otalora BB, Rol MA et al (2010) Dissociation of the circadian system of Octodon degus by T28 and T21 light-dark cycles. Chronobiol Int 27:1580–1595

    Article  PubMed  Google Scholar 

  • Walton JC, Weil ZM, Nelson RJ (2011) Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 32:303–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ward JM, Vallender EJ (2012) The resurgence and genetic implications of New World primates in biomedical research. Trends Genet 28:586–591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Webley GE, Hearn JP (1987) Local production of progesterone by the corpus luteum of the marmoset monkey in response to perfusion with chorionic gonadotrophin and melatonin in vivo. J Endocrinol 112:449–457

    Article  PubMed  CAS  Google Scholar 

  • Wechselberger E, Erkert HG (1994) Characteristics of the light-induced phase response of circadian activity rhythms in common marmosets, Callithrix J. jacchus (Primates-Cebidae). Int Soc Chronobiol 11:275–284

    Article  CAS  Google Scholar 

  • Wehr TA (2001a) Seasonal photoperiodic responses of the human circadian system. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology: circadian clocks, vol 12. Kluwer/Plenum, New York, pp 715–744

    Chapter  Google Scholar 

  • Wehr TA (2001b) Photoperiodism in humans and other primates: evidence and implications. J Biol Rhythms 16:348–364

    Article  PubMed  CAS  Google Scholar 

  • Wehr TA, Moul DE, Barbato G et al (1993) Conservation of photoperiod-responsive mechanisms in humans. Am J Physiol 265:R846–R857

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Fontenele Araujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Silva, C.A., Carrijo, C., Santana, K., Araujo, J.F. (2015). Functional Organization of Circadian Timing System of a Diurnal Primate (Marmoset). In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_6

Download citation

Publish with us

Policies and ethics