Skip to main content

Simulating the Emergence of Early Physical and Social Interactions : A Developmental Route through Low Level Visuomotor Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8575))

Abstract

In this paper, we propose a bio-inspired and developmental neural model that allows a robot, after learning its own dynamics during a babbling phase, to gain imitative and shape recognition abilities leading to early attempts for physical and social interactions. We use a motor controller based on oscillators. During the babbling step, the robot learns to associate its motor primitives (oscillators) to the visual optical flow induced by its own arm. It also statically learn to recognize its arm by selecting moving local view (feature points) in the visual field. In real indoor experiments we demonstrate that, using the same model, early physical (reaching objects) and social (immediate imitation) interactions can emerge through visual ambiguities induced by the external visual stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lange, J., Lappe, M.: The role of spatial and temporal information in biological motion perception. Advances in Cognitive Psychology 3(4), 419 (2007)

    Article  Google Scholar 

  2. Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience 4(3), 179–192 (2003)

    Article  Google Scholar 

  3. Meltzoff, A.N., Moore, M.K.: Imitation of facial and manual gestures by human neonates. Science 198(4312), 75–78 (1977)

    Article  Google Scholar 

  4. Meltzoff, A.N.: ‘Like me’: A foundation for social cognition. Developmental Science 10(1), 126–134 (2007)

    Article  Google Scholar 

  5. Viviani, P., Stucchi, N.: Biological movements look uniform: Evidence of motor-perceptual interactions. Journal of Experimental Psychology: Human Perception and Performance 18(3), 603 (1992)

    Google Scholar 

  6. Casile, A., Giese, M.A.: Possible influences of motor learning on perception of biological motion. J. Vis. 4, 221a (2004)

    Google Scholar 

  7. Nadel, J., Carchon, I., Kervella, C., Marcelli, D., Rserbat-Plantey, D.: Expectancies for social contingency in 2-month-olds. Developmental Science 2(2), 164–173 (1999)

    Article  Google Scholar 

  8. Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends in Cognitive Sciences 6(11), 481–487 (2002)

    Article  Google Scholar 

  9. Lopes, M., Santos-Victor, J.: A developmental roadmap for learning by imitation in robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37(2), 308–321 (2007)

    Article  Google Scholar 

  10. Rao, R.P., Shon, A.P., Meltzoff, A.N.: A Bayesian model of imitation in infants and robots. In: Imitation and Social Learning in Robots, Humans, and Animals, pp. 217–247 (2004)

    Google Scholar 

  11. Demiris, Y., Meltzoff, A.: The robot in the crib: A developmental analysis of imitation skills in infants and robots. Infant and Child Development 17(1), 43–53 (2008)

    Article  Google Scholar 

  12. Oztop, E., Kawato, M., Arbib, M.: Mirror neurons and imitation: A computationally guided review. Neural Networks 19(3), 254–271 (2006)

    Article  MATH  Google Scholar 

  13. Gaussier, P., Moga, S., Quoy, M., Banquet, J.P.: From perception-action loops to imitation processes: A bottom-up approach of learning by imitation. Applied Artificial Intelligence 12(7-8), 701–727 (1998)

    Article  Google Scholar 

  14. Nagai, Y., Kawai, Y., Asada, M.: Emergence of mirror neuron system: Immature vision leads to self-other correspondence. In: 2011 IEEE International Conference on Development and Learning (ICDL), vol. 2, pp. 1–6. IEEE (August 2011)

    Google Scholar 

  15. Law, J., Shaw, P., Earland, K., Sheldon, M., Lee, M.H.: A psychology based approach for longitudinal development in cognitive robotics. Frontiers in Neurorobotics 8(1) (2014)

    Google Scholar 

  16. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V.: Neural population dynamics during reaching. Nature (2012)

    Google Scholar 

  17. Revel, A., Andry, P.: Emergence of structured interactions: From a theoretical model to pragmatic robotics. Neural Networks 22(2), 116–125 (2009)

    Article  Google Scholar 

  18. Movshon, J.A., Adelson, E.H., Gizzi, M.S., Newsome, W.T.: The analysis of moving visual patterns. Pattern Recognition Mechanisms 54, 117–151 (1985)

    Google Scholar 

  19. Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Symposium East, pp. 319–331. International Society for Optics and Photonics (November 1981)

    Google Scholar 

  20. Amiaz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern Recognition 40(9), 2496–2503 (2007)

    Article  MATH  Google Scholar 

  21. Hol, K., Treue, S.: Different populations of neurons contribute to the detection and discrimination of visual motion. Vision Research 41(6), 685–689 (2001)

    Article  Google Scholar 

  22. Gaussier, P., Joulain, C., Zrehen, S., Banquet, J.P., Revel, A.: Visual navigation in an open environment without map. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1997, vol. 2, pp. 545–550. IEEE (1997)

    Google Scholar 

  23. Lepretre, S., Gaussier, P., Cocquerez, J.P.: From navigation to active object recognition (2000)

    Google Scholar 

  24. Hasnain, S.K., Mostafaoui, G., Gaussier, P.: A synchrony-based perspective for partner selection and attentional mechanism in human-robot interaction. Paladyn 3(3), 156–171 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Braud, R., Mostafaoui, G., Karaouzene, A., Gaussier, P. (2014). Simulating the Emergence of Early Physical and Social Interactions : A Developmental Route through Low Level Visuomotor Learning. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds) From Animals to Animats 13. SAB 2014. Lecture Notes in Computer Science(), vol 8575. Springer, Cham. https://doi.org/10.1007/978-3-319-08864-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08864-8_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08863-1

  • Online ISBN: 978-3-319-08864-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics