Skip to main content

Macro Deformation and Micro Displacement Characteristics of Granular Materials

  • Conference paper
Engineering Geology for Society and Territory – Volume 4
  • 1185 Accesses

Abstract

Granular material is the most common thing in the nature, including sand, rice and coffee beans et al. Soil and sand are typical granular materials, the deformation of granular materials like soil and sand could induce different kinds of natural hazards, like landslides, debris flow and ground settlement. The macro deformation of granular material is caused by the integral of micro displacement of each particle. However, traditional experimental method could only get the macro deformation rather than micro displacement. Hence, the three typical kinds of granular displacement are explained in this paper to reveal the macro deformation mechanism, firstly. Two latest novel experimental techniques on granular materials deformation studying and corresponding working principles are introduced in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Campbell CS, Brennan CE (1985) Computer simulation of granular shear flows. J Fluid Mech 151(167):88

    Google Scholar 

  • Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Daniela RC, Poloskia AP, Eduardo Sáezb A (2007) A continuum constitutive model for cohesionless granular flows. Chem Eng Sci 62(5):1343–1350

    Article  Google Scholar 

  • Dijksman JA, Rietz F, Lorincz KA, van Hecke M, Losert W (2012) Invited article: refractive index matched scanning of dense granular materials. Rev Sci Instrum 83(1):011301–011312

    Article  Google Scholar 

  • Dijksman JA, Zheng H, Behringer RP (2013) Imaging soft sphere packings in a novel triaxial shear setup. In: AIP conference proceedings, vol 1542, p 457

    Google Scholar 

  • Goodman MA, Cowin SC (1972) A continuum theory for granular materials. Arch Ration Mech Anal 44(4):249–266

    Article  Google Scholar 

  • Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192

    Article  Google Scholar 

  • Huang Y, Zheng H (2013) Mechanical characteristics of a lunar regolith simulant at low confining pressure. Earth Environ Sci. doi:10.1007/s12665-013-2763-7

    Article  Google Scholar 

  • Huang Y, Zheng H, Mao W, Li G, Ye B (2011) Numerical simulation of air–soil two-phase flow based on turbulence modeling. Nat Hazards 58(1):311–323

    Article  Google Scholar 

  • Indraratna B, Wijewardena LSS, Balasubramaniam AS (1993) Large-scale triaxial testing of grey wacke rockfill. Geotechnique 43(1):37–51

    Article  Google Scholar 

  • Inouye Y, Kawata S (1994) Near-field scanning optical microscope with a metallic probe tip. Opt Lett 19(3):159–161

    Article  Google Scholar 

  • Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68(4):1259–1273

    Article  Google Scholar 

  • Jiang MJ, Yu HS, Harris D (2005) A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5):340–357

    Article  Google Scholar 

  • Jiang MJ, Yu HS, Harris D (2006) Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int J Numer Anal Meth Geomech 30(8):723–761

    Article  Google Scholar 

  • Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Article  Google Scholar 

  • Kanatani KI (1981) A theory of contact force distribution in granular materials. Powder Technol 28(2):167–172

    Article  Google Scholar 

  • Liu AJ, Nagel SR (1998) Nonlinear dynamics: Jamming is not just cool any more. Nature 396(6706):21–22

    Article  Google Scholar 

  • McDowell GR, Bolton MD, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44(12):2079–2101

    Article  Google Scholar 

  • Norihiko M, Sukeo O (1979) Particle-crushing of a decomposed granite soil under shear stresses. Soils Found (JSSMFE) 19(3):1–14

    Article  Google Scholar 

  • Oda M, Iwashita K (1999) Mechanics of granular materials. A. A. Balkema, Rotterdam

    Google Scholar 

  • Oda M, Iwashita K (2000) Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int J Eng Sci 38(15):1713–1740

    Article  Google Scholar 

  • Rao KK, Nott PR, Sundaresan S (2008) An introduction to granular flow. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sladen FME, Payne DN, Adams MJ (1976) Determination of optical fiber refractive index profiles by a near-field scanning technique. Appl Phys Lett 28(5):255–258

    Article  Google Scholar 

  • Utili S, Nova R (2008) DEM analysis of bonded granular geomaterials. Int J Numer Anal Meth Geomech 32(17):1997–2031

    Article  Google Scholar 

  • Vesic AS, Clough GW (1968) Behavior of granular materials under high stresses. J Soil Mech Found Div 94(SM3):661–688

    Google Scholar 

  • Zhang J, Majmudar TS, Sperl M, Behringer RP (2010) Jamming for a 2D granular material. Soft Matter 6(13):2982–2991

    Article  Google Scholar 

  • Zheng H, Dijksman JA, Behringer RP (2013) Novel experimental apparatus for granular experiments on basal friction. In: AIP conference proceedings, vol 1542, p 465

    Google Scholar 

  • Zhou Z, Wang J, Huang Y, Xu H (2013) Conceptual data model and method of settlement calculation for deformation and water release from saturated soft soil. Environ Earth Sci. doi:10.1007/s12665-013-2818-9

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 41172204) and the Fundamental Research Funds for the Central Universities (No. 2014B03414). The first author would like to express his gratitude to China Scholarship Council (CSC), Hohai University and Tongi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zheng, H., Zhou, Z., Wang, J. (2014). Macro Deformation and Micro Displacement Characteristics of Granular Materials. In: Lollino, G., Manconi, A., Locat, J., Huang, Y., Canals Artigas, M. (eds) Engineering Geology for Society and Territory – Volume 4. Springer, Cham. https://doi.org/10.1007/978-3-319-08660-6_20

Download citation

Publish with us

Policies and ethics