Skip to main content

Technologies of Carbon Materials. Syntheses and Preparations

  • Chapter
  • First Online:
Carbon for Sensing Devices

Abstract

In carbon materials technology the degree of development can be used to classify the various kinds of available carbon materials in three different stages. Conventional carbon materials include graphite blocks, the family of carbon blacks, activated carbons and diamond. Among the newly developed materials two types can be distinguished: nanotextured carbons and nanosized carbons. Nanotextured carbons comprise a wide range of carbon structures from carbon fibers, glass-like carbons or pyrolitic carbons to diamond-like carbon materials. Among nanosized carbons (or nanocarbons) fullerenes, carbon nanotubes and graphene can be quoted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mcenaney Brian, Chapter 1—Structure and Bonding in Carbon Materials in Carbon Materials for Advanced Technologies, (1999), Elsevier Science Ltd-Oxford.

    Google Scholar 

  2. Inagaki Michio, Kang Feiyu, Toyoda Masahiro and Konno Hidetaka, Advanced Materials Science and Engineering of Carbon (2014), Butterworth-Heinemann-United States.

    Google Scholar 

  3. Hirsch Andreas, The Era of Carbon Allotropes, Nature Materials 9 (2010) 868.

    Article  Google Scholar 

  4. Baidakova Marina and Vul Alexander, New Prospects and Frontiers of Nanodiamond Clusters, Journal of Physics D: Applied Physics 40 (2007) 6300

    Article  Google Scholar 

  5. Shenderova Olga A. and Gruen Dieter M., Ultrananocrystalline Diamond: Synthesis, Properties and Applications, (2012), William-Andrew Publishing-New York

    Google Scholar 

  6. Mochalin V. N., Shenderova O., Ho D. and Gogotsi Y., The Properties and Applications of Nanodiamonds, Nat Nanotechnol 7 (2012) 11

    Article  Google Scholar 

  7. Valerii Yu Dolmatov, Detonation-Synthesis Nanodiamonds: Synthesis, Structure, Properties and Applications, Russian Chemical Reviews 76 (2007) 339

    Article  Google Scholar 

  8. Greinke R. A., Mercuri R. A. and Beck E. J., Intercalation of Graphite, US Patent 4,895,713 (1990)

    Google Scholar 

  9. Smalc M. D., Shives G. D. and Reynolds R. A., Thermal Solution for Portable Electronic Devices, (2007)

    Google Scholar 

  10. Dresselhaus M. S. and Dresselhaus G., Intercalation Compounds of Graphite, Advances in Physics 30 (1981) 139

    Article  Google Scholar 

  11. Weller Thomas E., Ellerby Mark, Saxena Siddharth S., Smith Robert P. and Skipper Neal T., Superconductivity in the Intercalated Graphite Compounds C6yb and C6ca, Nature Physics 1 (2005) 39

    Article  Google Scholar 

  12. Acheson E. G., Manufacture of Graphite, U.S. Patent 568, 323(1896)

    Google Scholar 

  13. Brodd Ralph J., Batteries for Sustainability: Selected Entries from the Encyclopedia of Sustainability Science and Technology (2012) Springer-New York.

    Google Scholar 

  14. Baker D. E., Graphite as a Neutron Moderator and Reflector Material, Nuclear Engineering and Design 14 (1971) 413

    Article  Google Scholar 

  15. Jewell R. W., John W. and White D. H., A High Efficiency Graphite-Moderated Neutron Counter, Nuclear Instruments and Methods 63 (1968) 185

    Google Scholar 

  16. Donnet Jean-Baptiste, Carbon Fibers, (1998), CRC Press-New York.

    Google Scholar 

  17. Donnet Jean-Baptiste, Carbon Black: Science and Technology, Second Edition, (1993), CRC Press-New York.

    Google Scholar 

  18. Robertson J., Diamond-Like Amorphous Carbon, Materials Science and Engineering: R: Reports 37 (2002) 129.

    Google Scholar 

  19. Seshan K., Handbook of Thin-Film Deposition Processes Techniques (2002) William Andrew Publishing.-New York.

    Google Scholar 

  20. Smith Donald L., Thin-Film Deposition: Principles and Practice, (1995), McGraw-Hill-New York.

    Google Scholar 

  21. Geim A. K. and Novoselov K. S., The Rise of Graphene, Nauret Material 6 (2007) 183.

    Article  Google Scholar 

  22. Ilie Adelina, Conway N., Kleinsorge B., Rattier M., Robertson J. and., Photoconductivity of Diamond-Like Carbon, MRS Proceedings 498 (1998) 103

    Google Scholar 

  23. Grill A. and Patel V., Low Dielectric Constant Films Prepared by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane, Journal of Applied Physics 85 (1999)

    Google Scholar 

  24. Roy R. K. and Lee Kwang-Ryeol, Biomedical Applications of Diamond-Like Carbon Coatings: A Review, Journal of Biomedical Materials Research Part B: Applied Biomaterials 83 (2007) 72.

    Google Scholar 

  25. Bendavid A., Martin P. J., Randeniya L. and Amin M. S., The Properties of Fluorine Containing Diamond-Like Carbon Films Prepared by Plasma-Enhanced Chemical Vapour Deposition, Diamond and Related Materials 18 (2009) 66

    Google Scholar 

  26. Noda Tokiti and Inagaki Michio, The Structure of Glassy Carbon, Bulletin of the Chemical Society of Japan 37 (1964) 1534.

    Article  Google Scholar 

  27. Angus John C., Koidl Peter and Domitz Stanley, Carbon Thin Films in Plasma Deposited Thin Films, (1986), CRC Press-Boca Raton.

    Google Scholar 

  28. Geckeler K E and Samal S., Syntheses and Properties of Macromolecular Fullerenes, a Review, Polymer International 48 (1999) 743

    Google Scholar 

  29. Churilov G. N., Plasma Synthesis of Fullerenes (Review), Instruments and Experimental Techniques 43 (2000) 1

    Google Scholar 

  30. Homann Klaus-Heinrich, Fullerenes and Soot Formation—New Pathways to Large Particles in Flames, Angewandte Chemie International Edition 37 (1998) 24

    Article  Google Scholar 

  31. Cioslowski Jerzy, Electronic Structure Calculations on Fullerenes and Their Derivatives, (1995), Oxford University Press-United Kingdom.

    Google Scholar 

  32. Lu Xin and Chen Zhongfang, Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (< C60) and Single-Walled Carbon Nanotubes, Chemical Reviews 105 (2005) 3643

    Article  Google Scholar 

  33. Bühl Michael and Hirsch Andreas, Spherical Aromaticity of Fullerenes, Chemical Reviews 101 (2001) 1153

    Google Scholar 

  34. Ijjima S., Helical Microtubules of Graphitic Carbon, Nature 354 (1991) 56

    Article  Google Scholar 

  35. Endo M. and Kroto H. W., Formation of Carbon Nanofibers, The Journal of Physical Chemistry 96 (1992) 6941

    Google Scholar 

  36. Rodriguez N. M., A Review of Catalytically Grown Carbon Nanofibers, Journal of Materials Research 8 (1993) 3233

    Google Scholar 

  37. Thostensona E. T., Renb Zhifeng and Chou Tsu-Wei, Advances in the Science and Technology of Carbon Nanotubes and Their Composites a Review, Composites Science and Technology 61 (2001) 1899.

    Article  Google Scholar 

  38. Harris Peter J. F. and Harris Peter John Frederich, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, (1999), Cambridge University Press-United Kingdom.

    Google Scholar 

  39. Baughman R. H., Zakhidov A. A. and Heer W. A., Carbon Nanotubes–the Route toward Applications, Science 297 (2002) 787.

    Article  Google Scholar 

  40. Musso S., Fanchini G. and Tagliaferro A., Growth of Vertically Aligned Carbon Nanotubes by Cvd by Evaporation of Carbon Precursors, Diamond and Related Materials 14 (2005) 784.

    Article  Google Scholar 

  41. Wagner R. S. and Ellis W. C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Applied Physics Letters 4 (1964) 89

    Google Scholar 

  42. Zhang Jian, Müller Jens-Oliver, Zheng Weiqing, Wang Di, Su Dangsheng and Schlögl Robert, Individual Fe–Co Alloy Nanoparticles on Carbon Nanotubes: Structural and Catalytic Properties, Nano Letters 8 (2008) 2738

    Google Scholar 

  43. Flahaut E., Govindaraj A., Peigney A., Laurent Ch, Rousset A. and Rao C. N. R., Synthesis of Single-Walled Carbon Nanotubes Using Binary (Fe, Co, Ni) Alloy Nanoparticles Prepared in Situ by the Reduction of Oxide Solid Solutions, Chemical Physics Letters 300 (1999) 236

    Google Scholar 

  44. Hu Wenchong, Gong Dawei, Chen Zhi, Yuan Liming, Saito Kozo, Grimes Craig A. and, Growth of Well-Aligned Carbon Nanotube Arrays on Silicon Substrates Using Porous Alumina Film as a Nanotemplate, Applied Physics Letters 79 (2001) 3083

    Google Scholar 

  45. Martin I., Rius G., Atienzar P., Teruel L., Mestres N., Perez-Murano F., Garcia H., Godignon P., Corma A. and Lora-Tamayo E., Cvd Oriented Growth of Carbon Nanotubes Using Alpo4–5 and L Type Zeolites, Microelectron. Eng. 85 (2008) 1202

    Google Scholar 

  46. Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., Bush P., Siegal M. P. and Provencio P. N., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science 282 (1998) 5391

    Google Scholar 

  47. Martin-Fernandez Iñigo, Gabriel Gemma, Rius Gemma, Villa Rosa, Perez-Murano Francesc, Lora-Tamayo Emilio and Godignon Philippe, Vertically Aligned Multi-Walled Carbon Nanotube Growth on Platinum Electrodes for Bio-Impedance Applications, Microelectronic Engineering 86 (2009) 806

    Google Scholar 

  48. Zhang M., Atkinson Ken R. and Baughman Ray H., Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology, Science 306 (2004) 1358.

    Article  Google Scholar 

  49. Liu Jie, Fan Shoushan and Dai Hongjie, Recent Advances in Methods of Forming Carbon Nanotubes, MRS Bulletin 29 (2004) 244

    Google Scholar 

  50. Zhang Mei, Fang Shaoli, Zakhidov Anvar A., Lee Sergey B., Aliev Ali E., Williams Christopher D., Atkinson Ken R. and Baughman Ray H., Strong, Transparent, Multifunctional, Carbon Nanotube Sheets, Science 309 (2005) 1215

    Google Scholar 

  51. Gui Xuchun, Wei Jinquan, Wang Kunlin, Cao Anyuan, Zhu Hongwei, Jia Yi, Shu Qinke and Wu Dehai, Carbon Nanotube Sponges, Advanced Materials 22 (2010) 617

    Google Scholar 

  52. Choi Wonbong, Lahiri Indranil, Seelaboyina Raghunandan and Kang Yong Soo, Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences 35 (2010) 52

    Google Scholar 

  53. Avouris Phaedon and Xia Fengnian, Graphene Applications in Electronics and Photonics, MRS Bulletin 37 (2012) 1225

    Google Scholar 

  54. Novoselov K. S. and Castro Neto A. H., Two-Dimensional Crystals-Based Heterostructures: Materials with Tailored Properties, Physica Scripta T146 (2012) 014006

    Google Scholar 

  55. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V. and Firsov A. A., Two-Dimensional Gas of Massless Dirac Fermions in Graphene, Nature 438 (2005) 197

    Google Scholar 

  56. Balandin A. A., Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat Mater 10 (2011) 569

    Google Scholar 

  57. Lee Changgu, Wei Xiaoding, Kysar Jeffrey W. and Hone James, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321 (2008) 385

    Google Scholar 

  58. Adachi Seiji, Mohri Mamoru and Yamashina Toshiro, Surface Graphitization Process of Sic (0001) Single-Crystal at Elevated Temperatures, Surface Science 161 (1985) 479

    Google Scholar 

  59. De Heer Walt A., Berger Claire, Wu Xiaosong, First Phillip N., Conrad Edward H., Li Xuebin, Li Tianbo, Sprinkle Michael, Hass Joanna, Sadowski Marcin L., Potemski Marek and Martinez Gérard, Epitaxial Graphene, Solid State Communications 143 (2007) 92

    Google Scholar 

  60. Dahal Arjun and Batzill Matthias, Graphene-Nickel Interfaces: A Review, Nanoscale 6 (2014) 2548

    Google Scholar 

  61. Mattevi C., Kim Hokwon and Chhowalla M., A Review of Chemical Vapour Deposition of Graphene on Copper, Journal of Materials Chemistry 21 (2011) 3324

    Google Scholar 

  62. Obraztsov A. N., Chemical Vapour Deposition: Making Graphene on a Large Scale, Nature Nanotech 4 (2009) 212

    Google Scholar 

  63. Yu Qingkai, Jauregui Luis A., Wu Wei, Colby Robert, Tian Jifa, Su Zhihua, Cao Helin, Liu Zhihong, Pandey Deepak, Wei Dongguang, Chung Ting Fung, Peng Peng, Guisinger Nathan P., Stach Eric A., Bao Jiming, Pei Shin-Shem and Chen Yong P., Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition, Nature Mater 10 (2011) 443

    Google Scholar 

  64. Han Melinda Y., Özyilmaz Barbaros, Zhang Yuanbo and Kim Philip, Energy Band-Gap Engineering of Graphene Nanoribbons, Physical Review Letters 98 (2007) 206805

    Google Scholar 

  65. Dreyer Daniel R., Park Sungjin, Bielawski Christopher W. and Ruoff Rodney S., The Chemistry of Graphene Oxide, Chemical Society Reviews 39 (2010) 228

    Google Scholar 

  66. Chen Wufeng, Yan Lifeng and Bangal Prakriti R., Preparation of Graphene by the Rapid and Mild Thermal Reduction of Graphene Oxide Induced by Microwaves, Carbon 48 (2010) 3825

    Google Scholar 

  67. Bianco A., Cheng Hui-Ming, Enoki Toshiaki, Gogotsi Y., Hurt Robert H., Koratkar Nikhil, Kyotani Takashi, Monthioux M., Park Chong Rae, Tascon J. M. D. and Zhang Jin, All in the Graphene Family—a Recommended Nomenclature for Two-Dimensional Carbon Materials, Carbon 65 (2013) 1

    Google Scholar 

  68. Mei Zhang, Atkinson K. R., Baughman R. H. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology Science 306 (2004) 1358

    Google Scholar 

  69. Rius G., Yoshimura M., and Mestres N., Synthesis of Patterned Nanographene on Insulators from Focused Ion Beam Induced Deposition of Carbon, Journal of Vacuum Science & Technology B 30 (3)(2012) 3D113

    Google Scholar 

  70. Dai Hongjie, Hafner Jason H., Rinzler Andrew G., Colbert Daniel T. and Smalley Richard E., Nanotubes as Nanoprobes in Scanning Probe Microscopy, Nature 384 (1996) 147

    Google Scholar 

  71. Rius G., Clark I. T. and Yoshimura M., Robust Operation and Performance of Integrated Carbon Nanotubes Atomic Force Microscopy Probes, Journal of Physics: Conference Series 417 (2013) 012072

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Rius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rius, G. (2015). Technologies of Carbon Materials. Syntheses and Preparations. In: Demarchi, D., Tagliaferro, A. (eds) Carbon for Sensing Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08648-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08648-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08647-7

  • Online ISBN: 978-3-319-08648-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics