Skip to main content

Post-traumatic Stress Disorder and DNA Methylation

  • Living reference work entry
  • First Online:
Comprehensive Guide to Post-Traumatic Stress Disorder

Abstract

An epigenetic mechanism, DNA methylation (DNAm) is intrinsically linked to gene expression in response to environmental exposures, such as trauma. There is a growing body of literature indicating the role of DNAm in the disease process of post-traumatic stress disorder (PTSD) and in vulnerability and resilience to PTSD. Epigenetic changes in key hypothalamic-pituitary-adrenal (HPA) axis genes, genes involved in neurotransmission and immune function, and changes in global DNAm have been reported. In this chapter we discuss the mechanisms of DNAm and review the literature of DNAm patterns in HPA axis, neurotransmitter, and immune response genes, as well as in repetitive elements, associated with PTSD. We also discuss early life exposures to stress, how DNAm may mediate sex differences in risk for PTSD, how stress may effect transgenerational epigenetic alterations, and methodological issues to consider when studying DNAm patterns in PTSD. Since DNAm is involved in response and adaption to environmental stimuli, the study of DNAm is highly relevant to PTSD, given the vital role of the environment in the etiology of the disease. Understanding the epigenetic basis of PTSD has considerable public health impact, in that it will advance our knowledge of potential treatment modalities for patients, since epigenetic alterations may be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-mC:

5-Methylcytosine

ACTH:

Adrenocorticotropin

AVP:

Arginine vasopressin

CpG:

Cytosine-phosphate-guanine, site in DNA where a cytosine nucleotide occurs next to a guanine nucleotide

Crh:

Corticotropin-releasing hormone

DNAm:

Deoxyribonucleic acid methylation

DNHS:

Detroit neighborhood health study

DNMT:

DNA methyltransferase

ER:

Estrogen receptor

GC:

Glucocorticoid

GR:

Glucocorticoid receptor

HPA:

Hypothalamic-pituitary-adrenal

LINE:

Long interspersed nucleotide element

miRNA:

MicroRNA

mRNA:

Messenger ribonucleic acid

OEF:

Operation enduring freedom

OIF:

Operation Iraqi freedom

PTS:

Post-traumatic stress

PTSD:

Post-traumatic stress disorder

PVN:

Paraventricular nucleus

SNP:

Single nucleotide polymorphism

References

  • Adalsteinsson BT, Gudnason H, Aspelund T, et al. Heterogeneity in white blood cells has potential to confound DNA methylation measurements. PLoS One. 2012;7:e46705. doi:10.1371/journal.pone.0046705. Epub 2012 Oct 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beach SR, Brody GH, Todorov AA, et al. Methylation at SLC6A4 is linked to family history of child abuse: an examination of the Iowa adoptee sample. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:710–3. doi:10.1002/ajmg.b.31028.

    PubMed  PubMed Central  Google Scholar 

  • Bestor TH, Tycko B. Creation of genomic methylation patterns. Nat Genet. 1996;12:363–7.

    Article  PubMed  Google Scholar 

  • Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463:1042–7. doi:10.1038/nature08752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Binder EB, Bradley RG, Liu W, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299:1291–305. doi:10.1001/jama.299.11.1291.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    Article  PubMed  Google Scholar 

  • Bossu P, Ciaramella A, Salani F, et al. Interleukin-18, from neuroinflammation to Alzheimer’s disease. Curr Pharm Des. 2010;16:4213–24.

    Article  PubMed  Google Scholar 

  • Brennan K, Flanagan JM. Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res. 2012;5:1345–57.

    Article  Google Scholar 

  • Breslau N. The epidemiology of posttraumatic stress disorder: what is the extent of the problem? J Clin Psychiatry. 2001;62:16–22.

    PubMed  Google Scholar 

  • Breslau N, Davis GC, Andreski P, et al. Sex differences in posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54:1044–8.

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–9.

    Article  PubMed  Google Scholar 

  • Chang SC, Koenen KC, Galea S, et al. Molecular variation at the SLC6A3 locus predicts lifetime risk of PTSD in the Detroit neighborhood health study. PLoS One. 2012;7:e39184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2014;17:89–96. doi:10.1038/nn.3594. Epub 2013 Dec 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrlich M, Gama-Sosa M, Huang L, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10:2709–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A. 2010;107:8689–94. doi:10.1073/pnas.1002720107. Epub 2010 Apr 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin TB, Linder N, Russig H, et al. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS One. 2011;6:e21842. doi:10.1371/journal.pone.0021842. Epub 2011 Jul 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Elife. 2013;2:e00523. doi:10.7554/eLife.00523.

    PubMed  PubMed Central  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.

    Article  PubMed  Google Scholar 

  • Hodes GE. Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders. Biol Sex Differ. 2013;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Institute of Medicine. Treatment of posttraumatic stress disorder: an assessment of the evidence. Washington, DC: The National Academies Press; 2008.

    Google Scholar 

  • Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol. 2011;11:625–32. doi:10.1038/nri3042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics. 2011;6:857–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HJ, Kawasawa YI, Cheng F, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478:483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karg K, Burmeister M, Shedden K, et al. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry. 2011;68:444–54. doi:10.1001/archgenpsychiatry.2010.189. Epub 2011 Jan 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendler KS, Prescott CA. A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry. 1999;56:39–44.

    Article  PubMed  Google Scholar 

  • Klengel T, Mehta D, Anacker C, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:33–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klengel T, Pape J, Binder EB, et al. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology. 2014;80C:115–32.

    Article  Google Scholar 

  • Koenen KC, Uddin M, Chang SC, et al. SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depress Anxiety. 2011;28:639–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolodkin MH, Auger AP. Sex difference in the expression of DNA methyltransferase 3a in the rat amygdala during development. J Neuroendocrinol. 2011;23:577–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurian JR, Forbes-Lorman RM, Auger AP. Sex difference in mecp2 expression during a critical period of rat brain development. Epigenetics. 2007;2:173–8.

    Article  PubMed  Google Scholar 

  • Kurian JR, Olesen KM, Auger AP. Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology. 2010;151:2297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Labonte B, Azoulay N, Yerko V, et al. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl Psychiatry. 2014;4:e368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Diorio J, Tannanbaum B, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277:1659–62.

    Article  PubMed  Google Scholar 

  • Malan-Muller S, Seedat S, Hemmings SM. Understanding posttraumatic stress disorder: insights from the methylome. Genes Brain Behav. 2014;13:52–68.

    Article  PubMed  Google Scholar 

  • Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature. 2000;403:501–2.

    Article  PubMed  Google Scholar 

  • Mcgowan PO, Sasaki A, D’alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12:342–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meaney M, Aitken H, Bodnoff S, et al. Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions. Behav Neurosci. 1985;99:765–70.

    Article  PubMed  Google Scholar 

  • Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med. 2007;13:269–77.

    Article  PubMed  Google Scholar 

  • Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28:9055–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neylan TC, Sun B, Rempel H, et al. Suppressed monocyte gene expression profile in men versus women with PTSD. Brain Behav Immun. 2011;25:524–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nugent BM, Mccarthy MM. Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology. 2011;93:150–8.

    Article  PubMed  Google Scholar 

  • O’donovan A, Sun B, Cole S, et al. Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Dis Markers. 2011;30:123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10:475–8.

    Article  PubMed  Google Scholar 

  • Popp C, Dean W, Feng S, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463:1101–5. doi:10.1038/nature08829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Provençal N, Mj S, Guillemin C, et al. The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci. 2012;32:15626–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Putnam FW. Ten-year research update review: child sexual abuse. J Am Acad Child Adolesc Psychiatry. 2003;42:269–78.

    Article  PubMed  Google Scholar 

  • Raabe FJ, Spengler D. Epigenetic risk factors in PTSD and depression. Front Psychiatry. 2013;4:80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinius B, Jazin E. Prenatal sex differences in the human brain. Mol Psychiatry. 2009;14:987. 988-9.

    Article  PubMed  Google Scholar 

  • Ressler KJ, Mercer KB, Bradley B, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301:2462–71. doi:10.1001/jama.2009.878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth TL, Zoladz PR, Sweatt JD, et al. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res. 2011;45:919–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rusiecki JA, Chen L, Srikantan V, et al. DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics. 2012;4:29–40.

    Article  PubMed  Google Scholar 

  • Rusiecki JA, Byrne C, Galdzicki Z, et al. PTSD and DNA methylation in select immune function gene promoter regions: a repeated measures case-control study of U.S. military service members. Front Psychiatry. 2013;4:56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sartor CE, Grant JD, Lynskey MT, et al. Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression. Arch Gen Psychiatry. 2012;69:293–9. doi:10.1001/archgenpsychiatry.2011.1385.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 2008;9:129–40. doi:10.1038/nrg2295.

    Article  PubMed  Google Scholar 

  • Schwarz JM, Nugent BM, Mccarthy MM. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology. 2010;151:4871–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Segman R, Shefi N, Goltser-Dubner T, et al. Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry. 2005;10:500–13.

    Article  PubMed  Google Scholar 

  • Sipahi L, Wildman DE, Aiello AE, et al. Longitudinal epigenetic variation of DNA methyltransferase genes is associated with vulnerability to post-traumatic stress disorder. Psychol Med. 2014;44:3165–79. doi:10.1017/S0033291714000968. Epub 2014 Apr 25.

    Article  PubMed  Google Scholar 

  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20. doi:10.1038/nrg3354. Epub 2013 Feb 12.

    Article  PubMed  Google Scholar 

  • Smith AK, Conneely KN, Kilaru V, et al. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:700–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterrenburg L, Gaszner B, Boerrigter J, et al. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One. 2011;6:e28128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland JE, Costa M. Epigenetics and the environment. Ann N Y Acad Sci. 2003;983:151–60.

    Article  PubMed  Google Scholar 

  • Szyf M. The early life environment and the epigenome. Biochim Biophys Acta. 2009;1790:878–85. doi:10.1016/j.bbagen.2009.01.009. Epub 2009 Feb 3.

    Article  PubMed  Google Scholar 

  • Tolin DF, Foa EB. Sex differences in trauma and posttraumatic stress disorder: a quantitative review of 25 years of research. Psychol Bull. 2006;132:959–92.

    Article  PubMed  Google Scholar 

  • Tsankova N, Berton O, Renthal W, et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–25. Epub 2006 Feb 26.

    Article  PubMed  Google Scholar 

  • Uddin M, Aiello A, Wildman D, et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci U S A. 2010;107:9470–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin M, Galea S, Chang SC, et al. Gene expression and methylation signatures of MAN2C1 are associated with PTSD. Dis Markers. 2011;30:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin M, Sipahi L, Li J, et al. Sex differences in DNA methylation may contribute to risk of PTSD and depression: a review of existing evidence. Depress Anxiety. 2013;30:1151–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • van IJzendoorn MH, Caspers K, Bakermans-Kranenburg MJ, et al. Methylation matters: interaction between methylation density and serotonin transporter genotype predicts unresolved loss or trauma. Biol Psychiatry. 2010;68(5):405–7. doi: 10.1016/j.biopsych.2010.05.008.

    Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54. Epub 2004 Jun 27.

    Article  PubMed  Google Scholar 

  • Weaver I, Champagne F, Brown S, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005;25:11045–54.

    Article  PubMed  Google Scholar 

  • Wong CM. Post-traumatic stress disorder: advances in psychoneuroimmunology. Psychiatr Clin North Am. 2002;25:369–83.

    Article  PubMed  Google Scholar 

  • Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156:45–68. doi:10.1016/j.cell.2013.12.019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yehuda R, Daskalakis NP, Desarnaud F, et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psychiatry. 2013;4:118. doi:10.3389/fpsyt.2013.00118. eCollection 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zannas AS, West AE. Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience. 2014;264:157–70. doi:10.1016/j.neuroscience.2013.12.003. Epub 2013 Dec 13.

    Article  PubMed  Google Scholar 

  • Zieker J, Zieker D, Jatzko A, et al. Differential gene expression in peripheral blood of patients suffering from post-traumatic stress disorder, Letter to the editor. Mol Psychiatry. 2007;12:116–9.

    Article  PubMed  Google Scholar 

Download references

Disclaimer

The views expressed here are those of the authors and do not necessarily reflect the official views of the Uniformed Services University of the Health Sciences or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Rusiecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland (outside the USA)

About this entry

Cite this entry

Rusiecki, J.A., Uddin, M., Alexander, M.S., Moore, L.E. (2015). Post-traumatic Stress Disorder and DNA Methylation. In: Martin, C., Preedy, V., Patel, V. (eds) Comprehensive Guide to Post-Traumatic Stress Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-08613-2_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08613-2_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-08613-2

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics