Skip to main content

Approximate Counting of Matchings in (3,3)-Hypergraphs

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

Abstract

We design a fully polynomial time approximation scheme (FPTAS) for counting the number of matchings (packings) in arbitrary 3-uniform hypergraphs of maximum degree three, referred to as (3,3)-hypergraphs. It is the first polynomial time approximation scheme for that problem, which includes also, as a special case, the 3D Matching counting problem for 3-partite (3,3)-hypergraphs. The proof technique of this paper uses the general correlation decay technique and a new combinatorial analysis of the underlying structures of the intersection graphs. The proof method could be also of independent interest.

Part of research of the 3rd and 4th authors done at Emory University, Atlanta and another part during their visits to the Institut Mittag-Leffler (Djursholm, Sweden).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic approximation algorithms for counting matchings. In: STOC 2007—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 122–127. ACM (2007)

    Google Scholar 

  2. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic approximation algorithms for counting matchings (2008), http://people.math.gatech.edu/~tetali/PUBLIS/BGKNT_final.pdf

  3. Beineke, L.W.: Characterizations of derived graphs. J. Combin. Theory 9, 129–135 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chudnovsky, M., Seymour, P.: The roots of the independence polynomial of a clawfree graph. J. Combin. Theory Ser. B 97(3), 350–357 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dobrushin, R.: Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl. 15, 458–486 (1970)

    Article  MATH  Google Scholar 

  6. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse graphs. SIAM J. Comput. 31(5), 1527–1541 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fadnavis, S.: Approximating independence polynomials of claw-free graphs (2012), http://www.math.harvard.edu/~sukhada/IndependencePolynomial.pdf

  8. Greenhill, C.: The complexity of counting colourings and independent sets in sparse graphs and hypergraphs. Comput. Complexity 9(1), 52–72 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heilmann, O.: Existence of phase transitions in certain lattice gases with repulsive potential. Lett. Al Nuovo Cimento Series 2 3(3), 95–98 (1972)

    Article  Google Scholar 

  10. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6), 1149–1178 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karpiński, M., Ruciński, A., Szymańska, E.: Approximate counting of matchings in sparse uniform hypergraphs. In: 2013 Proceedings of the Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 72–79. SIAM (2013)

    Google Scholar 

  12. Kelly, F.P.: Stochastic models of computer communication systems. J. Roy. Statist. Soc. Ser. B 47(3), 379–395, 415–428 (1985)

    Google Scholar 

  13. Luby, M., Vigoda, E.: Fast convergence of the Glauber dynamics for sampling independent sets. Random Structures Algorithms 15(3-4), 229–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sly, A.: Computational transition at the uniqueness threshold. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science FOCS 2010, pp. 287–296 (2010)

    Google Scholar 

  15. Sly, A., Sun, N.: The computational hardness of counting in two-spin models on d-regular graphs. In: FOCS, pp. 361–369 (2012), http://arxiv.org/abs/1203.2602

  16. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Weitz, D.: Counting independent sets up to the tree threshold. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 140–149. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dudek, A., Karpinski, M., Ruciński, A., Szymańska, E. (2014). Approximate Counting of Matchings in (3,3)-Hypergraphs. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics