Skip to main content

Diabetes and cataracts

  • Chapter
  • First Online:
Managing Diabetic Eye Disease in Clinical Practice

Abstract

The ability to see depends on the complex anatomical structures of the eye working together to focus an image on the retina. Light rays enter the eye through the cornea, one of two key focusing structures in the eye. The light rays then pass through the pupil followed by the crystalline lens, the second focusing structure of the eye located immediately posterior to the iris. Together, the cornea and the lens focus light rays onto the retina, a tissue that performs the first step in neural processing of an image and begins the transmission of the image to the occipital lobe of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AAO Cataract and Anterior Segment PPP Panel, Hoskins Center for Quality Eye Care. Cataract in the Adult Eye PPP. American Academy of Ophthalmology; 2011. http://one.aao.org/preferredpractice- pattern/cataract-in-adult-eye-ppp–october-2011. Accessed February 26,2015.

  2. Congdon N, Vingerling JR, Klein BE, et al; Eye Diseases Prevalence Research Group. Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol. 2004;122:487-494.

    Google Scholar 

  3. Klein BE, Klein R, Moss SE. Prevalence of cataracts in a population-based study of persons with diabetes mellitus. Ophthalmology. 1985:1191-1196.

    Google Scholar 

  4. Olafsdottir E, Andersson DKG, Stefansson E. The prevalence of cataract in a population with and without type 2 diabetes mellitus. Acta Ophthalmologica. 2011;90:334-340.

    Google Scholar 

  5. Klein B, Klein R, Wang Q. Older-onset diabetes and lens opacities. The Beaver Dam Eye Study. Ophthalmic Epidemiol. 1995;2:49-55.

    Google Scholar 

  6. Rowe N, Mitchell P, Cumming R, Wans JJ. Diabetes, fasting blood glucose and age-related cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol. 2000;7:103-114.

    Google Scholar 

  7. Leske M, Wu S, Hennis A, Connell A, Hyman L. Diabetes, hypertension, and central obesity as cataract risk factors in a black population: The Barbados Eye Study. Ophthalmology. 1999;106:35-41.

    Google Scholar 

  8. Delcourt C, Cristol JP, Tessier F, Leger CL, Michel F, Papoz L. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: the POLA study. Am J Epidemiol. 2000;151:497-504.

    Google Scholar 

  9. Rotimi C, Daniel H, Zhou J, Obisesan A. Prevalence and determinants of diabetic retinopathy and cataracts in West African type 2 diabetes patients. Ethn Dis. 2003;13(2 suppl 2):S110-S117.

    Google Scholar 

  10. Negahban K, Chern K. Cataracts associated with systemic disorders and syndromes. Curr Opin Ophthalmol. 2002;13:419-422.

    Google Scholar 

  11. Kinoshita J, Kador P, Catiles M. Aldose reductase in diabetic cataracts. JAMA. 1981;246:257-61.

    Google Scholar 

  12. Lee AY, Chung SK, Chung SS. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc Natl Acad Sci U S A. 1995;92:2780-2784.

    Google Scholar 

  13. Kador P. The role of aldose reductase in the development of diabetic complications. Med Res Rev. 1988;8:325-352.

    Google Scholar 

  14. Harding J. Post-translational modification of lens proteins in cataract. Lens Eye Toxic Res. 1991;8:245-250.

    Google Scholar 

  15. Zarina S, Zhao H, Abraham E. Advanced glycation end products in human senile and diabetic cataractous lenses. Mol Cell Biochem. 2000;210:29-34.

    Google Scholar 

  16. Obrosova I, Chung S. Diabetic cataracts: mechanisms and management. Diabetes Metab Res Rev. 2010;26:172-180.

    Google Scholar 

  17. Kuszak JR, Clark JI, Cooper KE, Rae JL. Biology of the lens: lens transparency as a function of embryology, anatomy and physiology. In: Azar DT, Rosen ES, eds. Principles and Practice of Ophthalmology. 2nd edn. Philadelphia, PA: Saunders; 2000:1355-1408.

    Google Scholar 

  18. Snell RS, Lemp MA. Clinical Anatomy of the Eye. Oxford, UK: Wiley-Blackwell;1998:423.

    Google Scholar 

  19. Bron A, Sparrow J, Brown N, Harding J, Blakytny R. The lens in diabetes. Eye (Lond). 1993;7 (Pt 2):260-275.

    Google Scholar 

  20. Falck A, Laatikainen L. Diabetic cataract in children. Acta Ophthalmol Scand. 1998;76:238-240.

    Google Scholar 

  21. Age-Related Eye Disease Study Research Group. Risk factors associated with age-related nuclear and cortical cataract: a case-control study in the age-related eye disease study, AREDS report No. 5. Ophthalmology. 2001; 108:1400-1408.

    Google Scholar 

  22. Obrosova IG, Chung SSM, Kador PF. Diabetic cataracts: mechanisms and management. Diabetes Metab Res Rev. 2010;26:172-180.

    Google Scholar 

  23. Kador PF, Akagi Y, Kinoshita JH. Diabetic cataracts in animal models: prevention and reversibility with aldose reductase inhibitors. Diabet Med. 1985;2:194-196.

    Google Scholar 

  24. Kojima M, Sun L, Hata I, Sakamoto Y, Sasaki H, Sasaki K. Efficacy of α-lipoic acid against diabetic cataract in rat. Jpn J Ophthalmol. 2007;51:10-13.

    Google Scholar 

  25. Yoshida M1, Kimura H, Kyuki K, Ito M. Combined effect of vitamin E and insulin on cataracts of diabetic rats fed a high cholesterol diet. Biol Pharm Bull. 2004;27:338-344.

    Google Scholar 

  26. Zhao W, Devamanoharan P, Henein M. Diabetes-induced biochemical changes in rat lens: attenuation of cataractogenesis by pyruvate. Diabetes Obes Metab. 2000;2:165-174.

    Google Scholar 

  27. Meyer C, Sekundo W. Nutritional supplementation to prevent cataract formation. Dev Ophthalmol. 2005;38:103-119.

    Google Scholar 

  28. Pal, S. The Eye and Its Artificial Replacement. In, Design of Artificial Human Joints & Organs. New York, NY: Springer; 2014:219-249.

    Google Scholar 

  29. Akinci A, Batman C, Zilelioglu O. Does diabetic retinopathy increase the incidence of intraoperative complications of phacoemulsification surgery? Int Ophthalmol. 2005;26:229-234.

    Google Scholar 

  30. Lara-Smalling A, Cakiner-Egilmez T. Diabetes and cataract surgery: preoperative risk factors and positive nursing interventions. Insight. 2014;39:18-20.

    Google Scholar 

  31. Somaiya MD, Burns JD, Mintz R, Warren RE, Uchida T, Godley BF. Factors affecting visual outcomes after small-incision phacoemulsification in diabetic patients. J Cataract Refract Surg. 2002;28:1364-1371.

    Google Scholar 

  32. Mirza SA, Alexandridou A, Marshall T, Stavrou P. Surgically induced miosis during phacoemulsification in patients with diabetes mellitus. Eye (Lond). 2003;17:194-199.

    Google Scholar 

  33. Ambache N, Kavanagh L, Whiting J. Effect of mechanical stimulation on rabbits’ eyes: release of active substance in anterior chamber perfusates. J Physiol. 1965;176:378-408.

    Google Scholar 

  34. Sachdev MS, Singh K, Talwar D, Gupta SK, Dada VK. Comparative efficacy of diclofenac and flurbiprofen for maintenance of pupillary dilatation during cataract surgery. Ophthalmic Surg. 1994;25:92-94.

    Google Scholar 

  35. Corbett M, Richards A. Intraocular adrenaline maintains mydriasis during cataract surgery. Br J Ophthalmol. 1994;78:95-98.

    Google Scholar 

  36. Ostri C, Lund-Andersen H, Sander B, La Cour M. Phacoemulsification cataract surgery in a large cohort of diabetes patients: visual acuity outcomes and prognostic factors. J Cataract Refract Surg. 2011;37:2006-2012.

    Google Scholar 

  37. Chew E, Benson W, Remaley N, et al. Results after lens extraction in patients with diabetic retinopathy: early treatment diabetic retinopathy study report number 25. Arch Ophthalmol. 1999;117:1600-1606.

    Google Scholar 

  38. Squirrell D, Bhola R, Bush J, Winder S, Talbot J. A prospective, case controlled study of the natural history of diabetic retinopathy and maculopathy after uncomplicated phacoemulsification cataract surgery in patients with type 2 diabetes. Br J Ophthalmol. 2002;86:565-571.

    Google Scholar 

  39. Kato S, Fukada Y, Hori S, Tanaka Y, Oshika T. Influence of phacoemulsification and intraocular lens implantation on the course of diabetic retinopathy. J Cataract Refract Surg. 1999;25:788-793.

    Google Scholar 

  40. Hong T, Mitchell P, de Loryn T, Rochtchina E, Cugati S. Development and progression of diabetic retinopathy 12 months after phacoemulsification cataract surgery. Ophthalmology. 2009;116:1510-1514.

    Google Scholar 

  41. Chung J, Kim M-Y, Kim H-S, Yoo J-S, Lee Y-C. Effect of cataract surgery on the progression of diabetic retinopathy. J Cataract Refract Surg. 2002;28:626-630.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lo, K., Kloek, C. (2015). Diabetes and cataracts. In: Singh, R. (eds) Managing Diabetic Eye Disease in Clinical Practice. Adis, Cham. https://doi.org/10.1007/978-3-319-08329-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08329-2_5

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-08328-5

  • Online ISBN: 978-3-319-08329-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics