Skip to main content

Diradical Character View of Singlet Fission

  • Chapter
  • First Online:
  • 640 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

Abstract

Singlet fission is one of the internal conversion process in which a singlet exciton splits into two triplet excitons having long lifetimes . This phenomenon is expected to be useful for significantly improving the photoelectric conversion efficiency in organic photovoltaic cells. In this chapter, we present diradical character based molecular design guidelines for efficient singlet fission molecules based on the energy level matching conditions between the lowest singlet and triplet excited states, which are found to be described by the multiple diradical characters. A simple model, i.e., tetraradical hydrogen cluster, is investigated in order to reveal the multiple diradical character dependences of relative excitation energies and to build a diradical character based design guideline. On the basis of this guideline, several candidate molecules are proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.S. Davydov, Soviet Phys. Uspekhi 82, 145 (1964)

    Article  Google Scholar 

  2. M. Kasha, H.R. Rawls, M. Ashraf El-Bayoumi, Pure Appl. Chem 11, 371 (1965)

    CAS  Google Scholar 

  3. M.B. Smith, J. Michl, Chem. Rev. 110, 6891 (2010)

    Article  CAS  Google Scholar 

  4. S. Singh et al., J. Chem. Phys. 42, 330 (1965)

    Article  CAS  Google Scholar 

  5. M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100, 074510 (2006)

    Article  Google Scholar 

  6. H. Najafov, B. Lee, Q. Zhou, L.C. Feldman, V. Podzorov, Nat. Mater. 9, 938 (2010)

    Article  CAS  Google Scholar 

  7. A. Rao, M.W.B. Wilson et al., J. Am. Chem. Soc. 132, 12698 (2010)

    Article  CAS  Google Scholar 

  8. P.J. Jadhav, P.R. Brown et al., Adv. Mater. 24, 6169 (2012)

    Article  CAS  Google Scholar 

  9. P.J. Jadhav et al., Nano Lett. 11, 1495 (2011)

    Article  CAS  Google Scholar 

  10. B. Ehrler, Nano Lett. 12, 1053 (2012)

    Article  CAS  Google Scholar 

  11. B. Ehrler et al., Appl. Phys. Lett. 101, 113304 (2012)

    Article  Google Scholar 

  12. S.T. Roberts, J. Am. Chem. Soc. 134, 6388 (2012)

    Article  CAS  Google Scholar 

  13. Y. Takeda, R. Katoh et al., J. Electron. Spectrosc. Relat. Phenom. 78, 423 (1996)

    Article  CAS  Google Scholar 

  14. E.C. Greyson, J. Vura-Weis et al., J. Phys. Chem. B 114, 14168 (2010)

    Article  CAS  Google Scholar 

  15. W.-L. Chan, M. Ligges, X.-Y. Zhu, Nat. Chem. 4, 840 (2012)

    Article  CAS  Google Scholar 

  16. C.A. Coulson, G.S. Rushbrooke, Proc. Cambridge. Phil. Soc. 36, 193 (1940)

    Article  CAS  Google Scholar 

  17. A. Akdag, Z. Havlas, J. Michl, J. Am. Chem. Soc. 134, 14624 (2012)

    Article  CAS  Google Scholar 

  18. S. Ito, T. Minami, M. Nakano, J. Phys. Chem. C 116, 19729 (2012)

    Article  CAS  Google Scholar 

  19. K. Schulten, M. Karplus, Chem. Phys. Lett. 14, 305 (1972)

    Article  CAS  Google Scholar 

  20. M. Nakano, H. Fukui, T. Minami et al., Theor. Chem. Acc. 130, 711 (2011)

    Article  CAS  Google Scholar 

  21. M. Nakano, H. Fukui, T. Minami et al., erratum 130, 725 (2011)

    CAS  Google Scholar 

  22. M. Nakano et al., Phys. Rev. Lett. 99, 033001 (2007)

    Article  Google Scholar 

  23. K. Kamada et al., J. Phys. Chem. Lett. 1, 937 (2010)

    Article  CAS  Google Scholar 

  24. T. Minami, M. Nakano, J. Phys. Chem. Lett. 3, 145 (2012)

    Article  CAS  Google Scholar 

  25. M. Nakano, T. Minami et al., J. Chem. Phys. 136, 0243151 (2012)

    Google Scholar 

  26. M.W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993)

    Article  CAS  Google Scholar 

  27. H. Nagai, M. Nakano et al., Chem. Phys. Lett. 489, 212 (2010)

    Article  CAS  Google Scholar 

  28. Y. Kawashima, T. Hashimoto, H. Nakano et al., Theor. Chem. Acc. 102, 49 (1999)

    Article  CAS  Google Scholar 

  29. A.F. Schwerin, J.C. Johnson et al., J. Phys. Chem. A 114, 1457 (2010)

    Article  CAS  Google Scholar 

  30. H.A. Frank, J.A. Bautista et al., Biochemistry 39, 2831 (2010)

    Article  Google Scholar 

  31. A. Konishi, Y. Hirao et al., J. Am. Chem. Soc. 132, 11021 (2010)

    Article  CAS  Google Scholar 

  32. C. Lambert, Angew. Chem. Int. Ed. 50, 1756 (2011)

    Article  CAS  Google Scholar 

  33. K. Nakasuji, T. Kubo, Bull. Chem. Soc. Jpn 10, 1791 (2004)

    Article  Google Scholar 

  34. T. Kubo, A. Shimizu et al., Angew. Chem. Int. Ed. 44, 6564 (2005)

    Article  CAS  Google Scholar 

  35. T. Weil et al., Angew. Chem. Int. Ed. 49, 9068 (2010)

    Article  CAS  Google Scholar 

  36. E. Clar, Monatsh. Chem. 87, 391 (1956)

    Article  CAS  Google Scholar 

  37. A. Bohnen, Angew. Chem. Int. Ed. 29, 525 (1990)

    Article  Google Scholar 

  38. F.O. Holtrup, Chem. Eur. J. 3, 219 (1997)

    Article  CAS  Google Scholar 

  39. N.G. Pschirer, Angew. Chem. Int. Ed. 45, 1401 (2006)

    Article  CAS  Google Scholar 

  40. T. Minami et al., J. Phys. Chem. Lett. 3, 2719 (2012)

    Article  CAS  Google Scholar 

  41. R. Baer et al., Annu. Rev. Phys. Chem. 61, 85 (2010)

    Article  CAS  Google Scholar 

  42. T. Minami, M. Nakano, F. Castet et al., J Phys Chem Lett 2, 1725 (2011)

    Article  CAS  Google Scholar 

  43. I. Paci, J.C. Johnson et al., J. Am. Chem. Soc. 128, 16546 (2006)

    Article  CAS  Google Scholar 

  44. V.K. Thorsmølle, R.D. Averitt et al., Phys. Rev. Lett. 102, 017401 (2009)

    Article  Google Scholar 

  45. T. Minami, S. Ito, M. Nakano, J. Phys. Chem. Lett. 4, 2133 (2013)

    Article  CAS  Google Scholar 

  46. T. Minami, S. Ito, M. Nakano, J. Phys. Chem. A 117, 2000 (2013)

    Article  CAS  Google Scholar 

  47. S. Hirata, M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999)

    Article  CAS  Google Scholar 

  48. Y. Shao, M. Head-Gordon, A.I. Krylov, J. Chem. Phys. 118, 4807 (2003)

    Article  CAS  Google Scholar 

  49. A.D. Becke, Phys. Rev. A 38, 3098 (1998)

    Article  Google Scholar 

  50. C. Lee, W. Yang, P.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  51. F. Wang, T. Ziegler, J. Chem. Phys. 121, 12191 (2004)

    Article  CAS  Google Scholar 

  52. Y. Tawada, T. Tsuneda et al., J. Phys. Chem. 120, 8425 (2004)

    Article  CAS  Google Scholar 

  53. S. Arulmozhiraja, M.L. Coote, J. Chem. Theor. Comput. 7, 1296 (2011)

    Article  Google Scholar 

  54. Y. Shao, L. Fusti-Molnar et al., Q-CHEM Version 4.0 (Q-Chem. Inc, Pittsburgh, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakano .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Nakano, M. (2014). Diradical Character View of Singlet Fission. In: Excitation Energies and Properties of Open-Shell Singlet Molecules. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-08120-5_5

Download citation

Publish with us

Policies and ethics