Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 7))

  • 2230 Accesses

Abstract

Bipedal humans operate using elements of quadrupedal neuronal limb control during locomotion. This has significant implications for supporting transfer of the huge body of quadrupedal animal literature to human rehabilitation. In particular, this has translational applications for neurological rehabilitation after stroke where interlimb coordination is compromised. The data supports including arm activity in addition to leg activity as a component of gait retraining after stroke. An additional component is to consider strength training of the less affected limb to improve motor output of the more affected limb when that limb is too weak to be initially incorporated in functional rehabilitation. The major concept is to use activity related to the less affected limbs to modulate output of the more affected limbs after stroke. A key example is to incorporate arm activity into rehabilitation of leg motion in stepping after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zehr, E.P., Duysens, J.: Regulation of arm and leg movement during human locomotion. The Neuroscientist 10(4), 347–361 (2004)

    Article  Google Scholar 

  2. Frigon, A., Collins, D.F., Zehr, E.P.: Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning. J. Neurophysiol. 91(4), 1516–1523 (2004)

    Article  Google Scholar 

  3. Zehr, E.P., Hundza, S.R., Vasudevan, E.V.: The quadrupedal nature of human bipedal locomotion. Exerc. Sport Sci. Rev. 37(2), 102–108 (2009)

    Article  Google Scholar 

  4. Dietz, V.: Quadrupedal coordination of bipedal gait: implications for movement disorders. Journal of Neurology 258(8), 1406–1412 (2011)

    Article  Google Scholar 

  5. Dragert, K., Zehr, E.P.: Rhythmic arm cycling modulates Hoffmann reflex excitability differentially in the ankle flexor and extensor muscles. Neuroscience Letters 450(3), 235–238 (2009)

    Article  Google Scholar 

  6. Hundza, S.R., Zehr, E.P.: Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling. Exp. Brain Res. 193(2), 297–306 (2009)

    Article  Google Scholar 

  7. Haridas, C., Zehr, E.P.: Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking. J. Neurophysiol. 90, 2850–2861 (2003)

    Article  Google Scholar 

  8. Balter, J.E., Zehr, E.P.: Neural Coupling Between the Arms and Legs During Rhythmic Locomotor-Like Cycling Movement. Journal of Neurophysiology 97(2), 1809–1818 (2007)

    Article  Google Scholar 

  9. Mezzarane, R., et al.: Interlimb coupling from the arms to legs is differentially specified for populations of motor units comprising the compound H-reflex during “reduced” human locomotion. Experimental Brain Research 208(2), 157–168 (2011)

    Article  Google Scholar 

  10. Zehr, E.P., et al.: Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Neuroscience Letters 419(1), 10–14 (2007)

    Article  Google Scholar 

  11. Nakajima, T., et al.: Robotic-assisted stepping modulates monosynaptic reflexes in forearm muscles in the human. Journal of Neurophysiology (2011)

    Google Scholar 

  12. Sasada, S., et al.: Effects of Leg Pedaling on Early Latency Cutaneous Reflexes in Upper Limb Muscles. J. Neurophysiol. 104(1), 210–217 (2010)

    Article  Google Scholar 

  13. Nakajima, T., et al.: Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion. BMC Neuroscience 14(1), 28 (2013)

    Article  Google Scholar 

  14. Nakajima, T., et al.: Neural Mechanisms Influencing Interlimb Coordination during Locomotion in Humans: Presynaptic Modulation of Forearm H-Reflexes during Leg Cycling. PLoS One 8(10), e76313 (2013)

    Google Scholar 

  15. Schindler-Ivens, S., et al.: Soleus H-reflex excitability during pedaling post-stroke. Experimental Brain Research 188(3), 465–474 (2008)

    Article  Google Scholar 

  16. Schindler-Ivens, S., Brown, D.A., Brooke, J.D.: Direction-Dependent Phasing of Locomotor Muscle Activity Is Altered Post-Stroke. Journal of Neurophysiology 92(4), 2207–2216 (2004)

    Article  Google Scholar 

  17. Kautz, S.A., Patten, C.: Interlimb Influences on Paretic Leg Function in Poststroke Hemiparesis. J. Neurophysiol. 93(5), 2460–2473 (2005)

    Article  Google Scholar 

  18. Kautz, S.A., Patten, C., Neptune, R.R.: Does Unilateral Pedaling Activate a Rhythmic Locomotor Pattern in the Nonpedaling Leg in Post-Stroke Hemiparesis? Journal of Neurophysiology 95(5), 3154–3163 (2006)

    Article  Google Scholar 

  19. Zehr, E.P., Loadman, P.M., Hundza, S.R.: Neural control of rhythmic arm cycling after stroke. Journal of Neurophysiology 108(3), 891–905 (2012)

    Article  Google Scholar 

  20. Barzi, Y., Zehr, E.P.: Rhythmic arm cycling suppresses hyperactive soleus H-reflex amplitude after stroke. Clinical Neurophysiology 119, 1443–1452 (2008)

    Article  Google Scholar 

  21. Zehr, E.P., Loadman, P.M.: Persistence of locomotor-related interlimb reflex networks during walking after stroke. Clinical Neurophysiology 123(4), 796–807 (2012)

    Article  Google Scholar 

  22. Zehr, E.P., Fujita, K., Stein, R.B.: Reflexes from the superficial peroneal nerve during walking in stroke subjects. J. Neurophysiol. 79(2), 848–858 (1998)

    Google Scholar 

  23. Vasudevan, E., Zehr, E.P.: Multi-frequency arm cycling reveals bilateral locomotor coupling to increase movement symmetry. Experimental Brain Research 211(2), 299–312 (2011)

    Article  Google Scholar 

  24. Morita, H., et al.: Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain 124(Pt. 4), 826–837 (2001)

    Article  Google Scholar 

  25. Dobkin, B.H.: The clinical science of neurologic rehabilitation, vol. 2. Oxford University Press, New York (2003)

    Google Scholar 

  26. Dobkin, B.H.: Rehabilitation after stroke. New England Journal of Medicine 352(16), 1677–1684 (2005)

    Article  Google Scholar 

  27. Mirbagheri, M.M., Settle, K.: Neuromuscular properties of different spastic human joints vary systematically. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2010)

    Google Scholar 

  28. Meskers, C., et al.: Muscle weakness and lack of reflex gain adaptation predominate during post-stroke posture control of the wrist. J. Journal of NeuroEngineering and Rehabilitation 6(1), 29 (2009)

    Article  Google Scholar 

  29. Mihaltchev, P., et al.: Control of double-joint arm posture in adults with unilateral brain damage. Experimental Brain Research 163(4), 468–486 (2005)

    Article  Google Scholar 

  30. Dewald, J.P., et al.: Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118, 495–510 (1995)

    Article  Google Scholar 

  31. Artieda, J., Quesada, P., Obeso, J.A.: Reciprocal inhibition between forearm muscles in spastic hemiplegia. Neurology 41(2 Pt. 1), 286–289 (1991)

    Article  Google Scholar 

  32. Carroll, T.J., et al.: Contralateral effects of unilateral strength training: evidence and possible mechanisms. Journal of Applied Physiology 101(5), 1514–1522 (2006)

    Article  Google Scholar 

  33. Lee, M., Carroll, T.J.: Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports Medicine 37(1), 1–14 (2007)

    Article  Google Scholar 

  34. Munn, J., Herbert, R.D., Gandevia, S.C.: Contralateral effects of unilateral resistance training: a meta-analysis. Journal of Applied Physiology 96(5), 1861–1866 (2004)

    Article  Google Scholar 

  35. Scripture, E.S., Theodate, L., Brown, E.M.: On the education of muscular control and power. Stud. Yale Psychol. Lab 2, 5 (1894)

    Google Scholar 

  36. Lagerquist, O., Zehr, E.P., Docherty, D.: Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect. Journal of Applied Physiology 100(1), 83–90 (2006)

    Article  Google Scholar 

  37. Dragert, K., Zehr, E.: Bilateral neuromuscular plasticity from unilateral training of the ankle dorsiflexors. Experimental Brain Research 208(2), 217–227 (2011)

    Article  Google Scholar 

  38. Patten, C., Lexell, J., Brown, H.E.: Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. Journal of Rehabilitation Research & Development 41(3A), 293–312 (2004)

    Article  Google Scholar 

  39. Morris, S.L., Dodd, K.J., Morris, M.E.: Outcomes of progressive resistance strength training following stroke: a systematic review. Clin. Rehabil. 18(1), 27–39 (2004)

    Article  Google Scholar 

  40. Ellis, M.D., et al.: Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke. Muscle & Nerve 32(2), 170–178 (2005)

    Article  Google Scholar 

  41. Olsen, T.S.: Improvement of Function and Motor Impairment After Stroke. Neurorehabilitation and Neural Repair 3(4), 187–192 (1989)

    Article  MathSciNet  Google Scholar 

  42. Dragert, K., Zehr, E.P.: High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Experimental Brain Research, 1–12 (2012)

    Google Scholar 

  43. Farthing, J.P., Zehr, E.P.: Restoring Symmetry: Clinical Applications of Cross-Education. Exerc. Sport Sci. Rev. 42, 70–75 (2014)

    Article  Google Scholar 

  44. Ferris, D.P., Huang, H.J., Kao, P.C.: Moving the arms to activate the legs. Exerc. Sport Sci. Rev. 34(3), 113–120 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Paul Zehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zehr, E.P. et al. (2014). Neuromechanical Interlimb Interactions and Rehabilitation of Walking after Stroke. In: Jensen, W., Andersen, O., Akay, M. (eds) Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-08072-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08072-7_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08071-0

  • Online ISBN: 978-3-319-08072-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics