Skip to main content

Convex Programming with Separable Ellipsoidal Constraints: Application in Contact Problems with Orthotropic Friction

  • Chapter
  • First Online:
Optimization with PDE Constraints

Abstract

This contribution presents an algorithm for constrained minimization of strictly convex quadratic functions subject to simple bounds and separable ellipsoidal constraints. The algorithm is used for numerical solution of discretized 3D contact problems with orthotropic friction. These problems have been solved by a polygonal approximation of the friction cone. Our algorithm enables us to use the original friction cone without any approximation. Results of model examples are shown.

Mathematics Subject Classification (2010). Primary 90C25; Secondary 35J86, 49M25, 74P10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization (SIAM, Philadelphia, 2001)

    Book  MATH  Google Scholar 

  2. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  3. A. Conn, N. Gould, P. Toint, Trust Region Methods (SIAM, Philadelphia, 2000)

    Book  MATH  Google Scholar 

  4. Z. Dostál, Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities (Springer, Berlin/Heidelberg/New York, 2009)

    Google Scholar 

  5. Z. Dostál, T. Kozubek, An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications. Math. Programming 135, 195–220 (2012)

    Article  MATH  Google Scholar 

  6. Z. Dostál, T. Kozubek, A. Markopoulos, T. Brzobohatý, V. Vondrák, P. Horyl, Theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction. Comput. Methods Appl. Mech. Eng. 205, 110–120 (2012)

    Article  Google Scholar 

  7. Z. Dostál, R. Kučera, An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equaity constraints. SIAM J. Opt. 20, 2913–2938, 2010.

    Article  MATH  Google Scholar 

  8. G.H. Golub, C. F. Van Loan, Matrix Computation (The Johns Hopkins University Press, Baltimore, 1996)

    Google Scholar 

  9. J. Haslinger, Approximation of the Signorini problem with friction, obeying Coulomb law. Math. Meth. Appl. 5, 422–437 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Haslinger, I. Hlaváček, J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, vol. IV, ed. by P.G. Ciarlet, J.-L. Lions (North-Holland, Amsterdam, 1996), 313–485

    Google Scholar 

  11. J. Haslinger, R. Kučera, T. Ligurský, Qualitative analysis of 3D elastostatic contact problems with orthotropic Coulomb friction and a solution dependent coefficients of friction. J. Comput. Appl. Math. 235, 3464–3480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Kozubek, A. Markopoulos, T. Brzobohatý, R. Kučera, V. Vondrák, Z. Dostál, MatSol - MATLAB Efficient Solvers for Problems in Engineering. http://industry.it4i.cz/en/products/matsol

  13. R. Kučera, Minimizing quadratic functions with separable quadratic constraints. Optim. Meth. Soft. 22, 453–467 (2007)

    Article  MATH  Google Scholar 

  14. R. Kučera, Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints. SIAM J. Optim. 19, 846–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Nečas, I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Studies in applied mechanics, vol. 3 (Elsevier Scientific Publishing Co., Amsterdam/New York, 1980)

    Google Scholar 

  16. J.B. Rosen, The gradient projection method for nonlinear programming. Part II. Nonlinear constraints. J. Soc. Indust. Appl. Math. 9, 515–532 (1961)

    Google Scholar 

  17. S.J. Wright, Primal-Dual Interior-Point Methods (SIAM, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  18. H.W. Zhang, A.H. Liao, Z.Q. Xie, B.S. Chen, H. Wang, Some advances in mathematical programming methods for numerical simulation of contact problems, in Proceedings of the IUTAM Symposium on Computational Methods in Contact Mechanics, ed. by P. Wriggers, U. Nackenhorst (Springer, Berlin/Heidelberg/New York, 2007), 33–56

    Google Scholar 

Download references

Acknowledgements

The work was supported by the ESF OPTPDE Research Programme. The first author acknowledges also the support of the grant GAČR P201/12/0671. The second and the third author acknowledge the support of the European Regional Development Fund in the IT4 Innovations Centre of Excellence project (CZ.1.05/1.1. 00/02.0070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Haslinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haslinger, J., Kučera, R., Kozubek, T. (2014). Convex Programming with Separable Ellipsoidal Constraints: Application in Contact Problems with Orthotropic Friction. In: Hoppe, R. (eds) Optimization with PDE Constraints. Lecture Notes in Computational Science and Engineering, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-319-08025-3_7

Download citation

Publish with us

Policies and ethics