Skip to main content

Tree-Based Coarsening and Partitioning of Complex Networks

  • Conference paper
Experimental Algorithms (SEA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8504))

Included in the following conference series:

Abstract

Many applications produce massive complex networks whose analysis would benefit from parallel processing. Parallel algorithms, in turn, often require a suitable network partition. For solving optimization tasks such as graph partitioning on large networks, multilevel methods are preferred in practice. Yet, complex networks pose challenges to established multilevel algorithms, in particular to their coarsening phase.

One way to specify a (recursive) coarsening of a graph is to rate its edges and then contract the edges as prioritized by the rating. In this paper we (i) define weights for the edges of a network that express the edges’ importance for connectivity, (ii) compute a minimum weight spanning tree T m w.r.t. these weights, and (iii) rate the network edges based on the conductance values of T m’s fundamental cuts. To this end, we also (iv) develop the first optimal linear-time algorithm to compute the conductance values of all fundamental cuts of a given spanning tree.

We integrate the new edge rating into a leading multilevel graph partitioner and equip the latter with a new greedy postprocessing for optimizing the maximum communication volume (MCV). Bipartitioning experiments on established benchmark graphs show that both the postprocessing and the new edge rating improve upon the state of the art by more than 10%. In total, with a modest increase in running time, our new approach reduces the MCV of complex network partitions by 20.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph Partitioning and Graph Clustering – 10th DIMACS Impl. Challenge. Contemporary Mathematics, vol. 588. AMS (2013)

    Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bichot, C., Siarry, P. (eds.): Graph Partitioning. Wiley (2011)

    Google Scholar 

  4. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent Advances in Graph Partitioning. Technical Report ArXiv:1311.3144 (2014)

    Google Scholar 

  5. Chen, J., Safro, I.: Algebraic distance on graphs. SIAM J. Comput. 6, 3468–3490 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chevalier, C., Safro, I.: Comparison of coarsening schemes for multi-level graph partitioning. In: Proc. Learning and Intelligent Optimization (2009)

    Google Scholar 

  7. de Costa, L.F., Oliveira Jr., O.N., Travieso, G., Rodrigues, F.A., Boas, P.R.V., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Advances in Physics 60(3), 329–412 (2011)

    Article  Google Scholar 

  8. Fagginger Auer, B.O., Bisseling, R.H.: Graph coarsening and clustering on the GPU. In: Graph Partitioning and Graph Clustering. AMS and DIMACS (2013)

    Google Scholar 

  9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  10. Fischer, J., Heun, V.: Theoretical and Practical Improvements on the RMQ-Problem, with Applications to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Glantz, R., Meyerhenke, H., Schulz, C.: Tree-based Coarsening and Partitioning of Complex Networks. Technical Report arXiv:1402.2782 (2014)

    Google Scholar 

  12. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 469–475 (2006)

    Article  Google Scholar 

  13. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Parallel Computing 26(12), 1519–1534 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph partitioner. In: 24th Int. Parallel and Distributed Processing Symp, IPDPS (2010)

    Google Scholar 

  15. Jungnickel, D.: Graphs, Networks and Algorithms, 2nd edn. Algorithms and Computation in Mathematics, vol. 5. Springer, Berlin (2005)

    MATH  Google Scholar 

  16. Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J. of the ACM 51(3), 497–515 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM J. on Scientific Computing 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  18. Leskovec, J.: Stanford Network Analysis Package (SNAP)

    Google Scholar 

  19. Meyerhenke, H., Monien, B., Schamberger, S.: Graph partitioning and disturbed diffusion. Parallel Computing 35(10-11), 544–569 (2009)

    Article  Google Scholar 

  20. Pritchard, D., Thurimella, R.: Fast computation of small cuts via cycle space sampling. ACM Trans. Algorithms 46, 46:1–46:30 (2011)

    Google Scholar 

  21. Safro, I., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph partitioning. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 369–380. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Sanders, P., Schulz, C.: KaHIP – Karlsruhe High Qualtity Partitioning Homepage, http://algo2.iti.kit.edu/documents/kahip/index.html

  23. Sanders, P., Schulz, C.: Think Locally, Act Globally: Highly Balanced Graph Partitioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Schulz, C.: Hiqh Quality Graph Partititioning. PhD thesis, Karlsruhe Institute of Technology (2013)

    Google Scholar 

  25. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multilevel optimisation approach to graph partitioning. Journal of Global Optimization 29(2), 225–241 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wassenberg, J., Middelmann, W., Sanders, P.: An efficient parallel algorithm for graph-based image segmentation. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1003–1010. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Glantz, R., Meyerhenke, H., Schulz, C. (2014). Tree-Based Coarsening and Partitioning of Complex Networks. In: Gudmundsson, J., Katajainen, J. (eds) Experimental Algorithms. SEA 2014. Lecture Notes in Computer Science, vol 8504. Springer, Cham. https://doi.org/10.1007/978-3-319-07959-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07959-2_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07958-5

  • Online ISBN: 978-3-319-07959-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics