Skip to main content

Essentials of Viscoelasticity

  • Chapter
  • First Online:
  • 2287 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Viscoelastic dispersion is a rather essential element of the modeling process. The viscoelastic parameters of soft matter (such as shear modulus) depend on frequency because soft matter often relaxes on the time scale of the experiment. Mechanical relaxation can even be viewed as characteristic of soft condensed matter. The chapter discusses the basics of viscoelasticity and its relevance to QCM-based sensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shaw, M.T., MacKnight, W.J.: Introduction to Polymer Viscoelasticity. Wiley, New York (2005)

    Google Scholar 

  2. Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford (1998)

    Google Scholar 

  3. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, New York (2000)

    Google Scholar 

  4. Fang, N., Xi, D.J., Xu, J.Y., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5(6), 452–456 (2006)

    Article  ADS  Google Scholar 

  5. Gradzielski, M., Bergmeier, M., Muller, M., Hoffmann, H.: Novel gel phase: a cubic phase of densely packed monodisperse, unilamellar vesicles. J. Phys. Chem. B 101(10), 1719–1722 (1997)

    Article  Google Scholar 

  6. http://www2.mpip-mainz.mpg.de/documents/akbu/pages/mechdiel.html, Accessed 4 May 2013

  7. Kremer, F., Schönhals, A., Luck, W.: Broadband Dielectric Spectroscopy. Springer, New York (2002)

    Google Scholar 

  8. Kaatze, U., Hushcha, T.O., Eggers, F.: Ultrasonic broadband spectrometry of liquids: a research tool in pure and applied chemistry and chemical physics. J. Solution Chem. 29(4), 299–368 (2000)

    Article  Google Scholar 

  9. Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists: A Comprehensive Guide, 7th edn. Academic, Waltham (2012)

    Google Scholar 

  10. Mobley, J., Waters, K.R., Miller, J.G.: Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations. Phys. Rev. E 72(1), 016604 (2005)

    Google Scholar 

  11. Marrucci, G.: Dynamics of entanglements: a nonlinear model consistent with the Cox-Merz rule. J. Nonnewton. Fluid Mech. 62(2–3), 279–289 (1996)

    Article  Google Scholar 

  12. Nandi, N., Bhattacharyya, K., Bagchi, B.: Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem. Rev. 100(6), 2013–2045 (2000)

    Article  Google Scholar 

  13. Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys. Scr. 59(5), 391–396 (1999)

    Article  ADS  Google Scholar 

  14. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  15. Fritz, G., Pechhold, W., Willenbacher, N., Wagner, N.J.: Characterizing complex fluids with high frequency rheology using torsional resonators at multiple frequencies. J. Rheol. 47(2), 303–319 (2003)

    Article  ADS  Google Scholar 

  16. Hillman, A.R., Efimov, I., Ryder, K.S.: Time-scale- and temperature-dependent mechanical properties of viscoelastic poly (3,4-ethylenedioxythlophene) films. J. Am. Chem. Soc. 127(47), 16611–16620 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

A

Area

a T

Shift factor (to be used when producing a master curve, making use of time-temperature superposition)

E

Young’s modulus (E = G(1 + 2ν))

F

Tangential force

Shear compliance ( = 1/)

J

Elastic compliance

J′′

Viscous compliance

Shear modulus

G

Storage modulus

G′′

Loss modulus

K

Bulk modulus (an inverse compressibility)

M

Longitudinal modulus (M = K + 4G/3, governs the propagation of compressional waves, also called “plate modulus”)

ref

As an index: reference frequency or reference temperature

t

Time

β′, β′′

Power law exponents (see Eq. 10.4.1)

γ

Shear angle

δ L

Loss angle (tan(δ L ) = G′′/G′ = J′′/J′, often called tan(δ) in rheology)

n }

As set of complex resonance frequencies acquired at the different overtone orders

\( \widetilde{\upeta} \)

Viscosity (\( \widetilde{\upeta} \) = /(iω))

η

“Viscosity” in “Voigt-based modeling” (equal to G′′/ω)

ν

Poisson ratio

μ

Shear modulus as used in “Voigt-based modeling” (equal to G′)

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Essentials of Viscoelasticity. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_3

Download citation

Publish with us

Policies and ethics