Skip to main content

Postprandial Inflammation: Targeting Glucose and Lipids

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 824))

Abstract

Many risk factors have been identified as being responsible for the process of atherogenesis. Several of these risk factors are related to inflammation, which is an obligatory feature of the atherosclerotic plaque. Increasing evidence suggests that postprandial lipoproteins and glucose may be involved in the inflammatory process preceding the development of atherosclerosis. During the postprandial situation, remnants of chylomicrons and very low-density lipoproteins bind to circulating leukocytes and endothelial cells, leading to a state of acute activation with the expression of integrins on different cells, the generation of oxidative stress, production of cytokines and complement activation. Elevated plasma glucose levels may also induce leukocyte activation in humans. In addition, advanced glycation end products, formed during hyperglycemia, cause inflammation and endothelial damage. This chain of events results in a situation of acute inflammation causing endothelial dysfunction, which may be one of the earliest defects in atherogenesis. Interestingly, while this may occur several times each day after each meal, there is only limited information on the contribution of different nutrients on the postprandial inflammatory processes. In this review, we will focus on the available evidence and we will discuss the role of lifestyle and pharmaceutical interventions in modulating postprandial inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  2. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ. 2000;321:199–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Friedman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med. 1974;290:1275–8.

    Article  CAS  PubMed  Google Scholar 

  4. Muscari A, Massarelli G, Bastagli L, Poggiopollini G, Tomassetti V, Drago G, et al. Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur Heart J. 2000;21:1081–90.

    Article  CAS  PubMed  Google Scholar 

  5. Muscari A, Bozzoli C, Puddu GM, Sangiorgi Z, Dormi A, Rovinetti C, et al. Association of serum C3 levels with the risk of myocardial infarction. Am J Med. 1995;98:357–64.

    Article  CAS  PubMed  Google Scholar 

  6. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  7. Alipour A, van Oostrom AJHHM, Izraeljan A, Verseyden C, Collins JM, Frayn KN, et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28:792–7.

    Article  CAS  PubMed  Google Scholar 

  8. Van Oostrom AJHHM, Rabelink TJ, Verseyden C, Sijmonsma TP, Plokker HWM, De Jaegere PPT, et al. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis. 2004;177:175–82.

    Article  PubMed  Google Scholar 

  9. Sampson MJ, Davies IR, Brown JC, Ivory K, Hughes DA. Monocyte and neutrophil adhesion molecule expression during acute hyperglycemia and after antioxidant treatment in type 2 diabetes and control patients. Arterioscler Thromb Vasc Biol. 2002;22:1187–93.

    Article  CAS  PubMed  Google Scholar 

  10. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab. 2009;296:E1183–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang TY, Liu M, Portincasa P, Wang DQ-H. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Investig. 2013;43:1203–23.

    CAS  Google Scholar 

  13. Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev. 2012;92:1061–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Siddiqi S, Saleem U, Abumrad NA, Davidson NO, Storch J, Siddiqi SA, et al. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J Lipid Res. 2010;51:1918–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mansbach CM, Gorelick F. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol. 2007;293:G645–50.

    Article  CAS  PubMed  Google Scholar 

  16. Mansbach CM, Siddiqi SA. The biogenesis of chylomicrons. Annu Rev Physiol. 2010;72:315–33.

    Article  CAS  PubMed  Google Scholar 

  17. Brunzell JD, Hazzard WR, Porte D, Bierman EL. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest. 1973;52:1578–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nakajima K, Nakano T, Tokita Y, Nagamine T, Inazu A, Kobayashi J, et al. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta. 2011;412:1306–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rustaeus S, Lindberg K, Stillemark P, Claesson C, Asp L, Larsson T, et al. Assembly of very low density lipoprotein: a two-step process of apolipoprotein B core lipidation. J Nutr. 1999;129:463S–6.

    CAS  PubMed  Google Scholar 

  20. Olofsson S-O, Borén J. Apolipoprotein B secretory regulation by degradation. Arterioscler Thromb Vasc Biol. 2012;32:1334–8.

    Article  CAS  PubMed  Google Scholar 

  21. Bjorkegren J, Packard CJ, Hamsten A, Bedford D, Caslake M, Foster L, et al. Accumulation of large very low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. J Lipid Res. 1996;37:76–86.

    CAS  PubMed  Google Scholar 

  22. Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, Peelman F, et al. The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis. 2010;211:1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wang YI, Bettaieb A, Sun C, Deverse JS, Radecke CE, Mathew S, et al. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress. PLoS One. 2013;8:e78322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gower RM, Wu H, Foster GA, Devaraj S, Jialal I, Ballantyne CM, et al. CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol. 2011;31:160–6.

    Article  CAS  PubMed  Google Scholar 

  25. Higgins LJ, Rutledge JC. Inflammation associated with the postprandial lipolysis of triglyceride-rich lipoproteins by lipoprotein lipase. Curr Atheroscler Rep. 2009;11:199–205.

    Article  CAS  PubMed  Google Scholar 

  26. Van Oostrom AJHHM, Sijmonsma TP, Verseyden C, Jansen EHJM, de Koning EJP, Rabelink TJ, et al. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res. 2003;44:576–83.

    Article  PubMed  Google Scholar 

  27. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–92.

    CAS  PubMed  Google Scholar 

  28. Wanten G, van Emst-De Vries S, Naber T, Willems P. Nutritional lipid emulsions modulate cellular signaling and activation of human neutrophils. J Lipid Res. 2001;42:428–36.

    CAS  PubMed  Google Scholar 

  29. Bentley C, Hathaway N, Widdows J, Bejta F, De Pascale C, Avella M, et al. Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis. 2011;21:871–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes. 1988;37:832–7.

    Article  CAS  PubMed  Google Scholar 

  31. Van Oostrom AJHHM, Plokker HWM, van Asbeck BS, Rabelink TJ, van Kessel KPM, Jansen EHJM, et al. Effects of rosuvastatin on postprandial leukocytes in mildly hyperlipidemic patients with premature coronary sclerosis. Atherosclerosis. 2006;185:331–9.

    Article  PubMed  Google Scholar 

  32. Koo C, Wernette-Hammond ME, Garcia Z, Malloy MJ, Uauy R, East C, et al. Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors. J Clin Invest. 1988;81:1332–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Bermudez B, Lopez S, Varela LM, Ortega A, Pacheco YM, Moreda W, et al. Triglyceride-rich lipoprotein regulates APOB48 receptor gene expression in human THP-1 monocytes and macrophages. J Nutr. 2012;142:227–32.

    Article  CAS  PubMed  Google Scholar 

  34. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediat Inflamm. 2013;2013:152786.

    Article  Google Scholar 

  35. Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, et al. Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arter Thromb Vasc Biol. 2011;31:2090–7.

    Article  CAS  Google Scholar 

  36. De M Bandeira S, da Fonseca LJS, da S Guedes G, Rabelo LA, Goulart MOF, Vasconcelos SML. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci. 2013;14:3265–84.

    Article  CAS  PubMed Central  Google Scholar 

  37. Deopurkar R, Ghanim H, Friedman J, Abuaysheh S, Sia CL, Mohanty P, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33:991–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wang L, Guo L, Zhang L, Zhou Y, He Q, Zhang Z, et al. Effects of glucose load and nateglinide intervention on endothelial function and oxidative stress. J Diabetes Res. 2013;2013:849295.

    PubMed Central  PubMed  Google Scholar 

  39. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106:1319–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Inoguchi T, Xia P, Kunisaki M, Higashi S, Feener EP, King GL. Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol. 1994;267:E369–79.

    CAS  PubMed  Google Scholar 

  41. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  42. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269:9889–97.

    CAS  PubMed  Google Scholar 

  43. Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;1:1.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Schmidt AM, Yan SD, Brett J, Mora R, Nowygrod R, Stern D. Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products. J Clin Invest. 1993;91:2155–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Fukami K, Yamagishi S-I, Okuda S. Role of AGEs-RAGE system in cardiovascular disease. Curr Pharm Des. 2014;20:2395–402.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem. 2000;275:25781–90.

    Article  CAS  PubMed  Google Scholar 

  47. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med. 2003;198:1507–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Acosta J, Hettinga J, Flückiger R, Krumrei N, Goldfine A, Angarita L, et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci U S A. 2000;97:5450–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Oka S-I, Hsu C-P, Sadoshima J. Regulation of cell survival and death by pyridine nucleotides. Circ Res. 2012;111:611–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Burton-Freeman B, Linares A, Hyson D, Kappagoda T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J Am Coll Nutr. 2010;29:46–54.

    Article  CAS  PubMed  Google Scholar 

  51. Sardo CL, Kitzmiller JP, Apseloff G, Harris RB, Roe DJ, Stoner GD, et al. An open-label randomized crossover trial of lyophilized black raspberries on postprandial inflammation in older overweight males: a pilot study. Am J Ther. 2013. Epub ahead of print.

    Google Scholar 

  52. Yang J, Han Y, Chen C, Sun H, He D, Guo J, et al. EGCG attenuates high glucose-induced endothelial cell inflammation by suppression of PKC and NF-κB signaling in human umbilical vein endothelial cells. Life Sci. 2013;92:589–97.

    Article  CAS  PubMed  Google Scholar 

  53. Ghanim H, Sia CL, Upadhyay M, Upadhyay M, Korzeniewski K, Viswanathan P, et al. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression. Am J Clin Nutr. 2010;91:940–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Burton-Freeman B, Talbot J, Park E, Krishnankutty S, Edirisinghe I. Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol Nutr Food Res. 2012;56:622–31.

    Article  CAS  PubMed  Google Scholar 

  55. Blanco-Colio LM, Valderrama M, Alvarez-Sala LA, Bustos C, Ortego M, Hernández-Presa MA, et al. Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation. 2000;102:1020–6.

    Article  CAS  PubMed  Google Scholar 

  56. Bellido C, López-Miranda J, Blanco-Colio LM, Pérez-Martínez P, Muriana FJ, Martín-Ventura JL, et al. Butter and walnuts, but not olive oil, elicit postprandial activation of nuclear transcription factor kappaB in peripheral blood mononuclear cells from healthy men. Am J Clin Nutr. 2004;80:1487–91.

    CAS  PubMed  Google Scholar 

  57. Camargo A, Delgado-Lista J, Garcia-Rios A, Cruz-Teno C, Yubero-Serrano EM, Perez-Martinez P, et al. Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people. Br J Nutr. 2012;108:500–8.

    Article  CAS  PubMed  Google Scholar 

  58. Li Z, Wong A, Henning SM, Zhang Y, Jones A, Zerlin A, et al. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in healthy volunteers. Food Funct. 2013;4:384–91.

    Article  CAS  PubMed  Google Scholar 

  59. Bloomer RJ, Fisher-Wellman KH. Postprandial oxidative stress in exercise trained and sedentary cigarette smokers. Int J Environ Res Public Health. 2009;6:579–91.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Clegg M, McClean C, Davison WG, Murphy HM, Trinick T, Duly E, et al. Exercise and postprandial lipaemia: effects on peripheral vascular function, oxidative stress and gastrointestinal transit. Lipids Heal Dis. 2007;6:30.

    Article  Google Scholar 

  61. Dixon NC, Hurst TL, Talbot DCS, Tyrrell RM, Thompson D. Active middle-aged men have lower fasting inflammatory markers but the postprandial inflammatory response is minimal and unaffected by physical activity status. J Appl Physiol. 2009;107:63–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Plat J, Jellema A, Ramakers J, Mensink RP. Weight loss, but not fish oil consumption, improves fasting and postprandial serum lipids, markers of endothelial function, and inflammatory signatures in moderately obese men. J Nutr. 2007;137:2635–40.

    CAS  PubMed  Google Scholar 

  63. Corpeleijn E, Saris WHM, Jansen EHJM, Roekaerts PMHJ, Feskens EJM, Blaak EE. Postprandial interleukin-6 release from skeletal muscle in men with impaired glucose tolerance can be reduced by weight loss. J Clin Endocrinol Metab. 2005;90:5819–24.

    Article  CAS  PubMed  Google Scholar 

  64. Halkes CJ, van Dijk H, de Jaegere PP, Plokker HW, van Der Helm Y, Erkelens DW, et al. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease: effects of expanded-dose simvastatin. Arterioscler Thromb Vasc Biol. 2001;21:1526–30.

    Article  CAS  PubMed  Google Scholar 

  65. Verseyden C, Meijssen S, van Dijk H, Jansen H, Castro Cabezas M. Effects of atorvastatin on fasting and postprandial complement component 3 response in familial combined hyperlipidemia. J Lipid Res. 2003;44:2100–8.

    Article  CAS  PubMed  Google Scholar 

  66. Kakuda H, Kobayashi J, Nakato M, Takekoshi N. Short-term effect of pitavastatin treatment on glucose and lipid metabolism and oxidative stress in fasting and postprandial state using a test meal in Japanese men. Cholesterol. 2013;2013:314170.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Rosenson RS, Huskin AL, Wolff DA, Helenowski IB, Rademaker AW. Fenofibrate reduces fasting and postprandial inflammatory responses among hypertriglyceridemia patients with the metabolic syndrome. Atherosclerosis. 2008;198:381–8.

    Article  CAS  PubMed  Google Scholar 

  68. Okopień B, Krysiak R, Herman ZS. Effects of short-term fenofibrate treatment on circulating markers of inflammation and hemostasis in patients with impaired glucose tolerance. J Clin Endocrinol Metab. 2006;91:1770–8.

    Article  PubMed  Google Scholar 

  69. Van Wijk J, Coll B, Castro Cabezas M, Koning E, Camps J, Mackness B, et al. Rosiglitazone modulates fasting and post-prandial paraoxonase 1 activity in type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2006;33:1134–7.

    Article  PubMed  Google Scholar 

  70. Coll B, van Wijk JPH, Parra S, Castro Cabezas M, Hoepelman IM, Alonso-Villaverde C, et al. Effects of rosiglitazone and metformin on postprandial paraoxonase-1 and monocyte chemoattractant protein-1 in human immunodeficiency virus-infected patients with lipodystrophy. Eur J Pharmacol. 2006;544:104–10.

    Article  CAS  PubMed  Google Scholar 

  71. Ceriello A, Novials A, Ortega E, Canivell S, La Sala L, Pujadas G, et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care. 2013;36:2346–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Castro Cabezas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Vries, M.A., Klop, B., Janssen, H.W., Njo, T.L., Westerman, E.M., Castro Cabezas, M. (2014). Postprandial Inflammation: Targeting Glucose and Lipids. In: Camps, J. (eds) Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanisms and Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-319-07320-0_12

Download citation

Publish with us

Policies and ethics