Skip to main content

Induction and Standard Immunosuppression

  • Reference work entry
  • First Online:
Solid Organ Transplantation in Infants and Children

Part of the book series: Organ and Tissue Transplantation ((OTT))

  • 892 Accesses

Abstract

Solid organ transplantation (SOT) is a life-saving procedure for patients with end-stage organ disease. In order to maximize long-term patient and allograft survival, transplant practitioners must skillfully maintain an overall net state of immunosuppression necessary to prevent allograft rejection while also limiting the risk of opportunistic infections, avoiding malignancy, and minimizing adverse effects of chronic immunosuppression. Biologic induction agents are utilized in the majority of pediatric SOT with the exception of liver transplant recipients. Modern-day maintenance immunosuppression in pediatric SOT typically consists of tacrolimus ± mycophenolate mofetil and/or corticosteroids. Due to ontogenic changes in growth and development, the absorption, distribution, metabolism, and excretion (ADME) properties of various drugs, especially immunosuppressive medications, may be difficult to predict and therefore require very close monitoring for safety and efficacy. Chronic administration of immunosuppressive medications in infants and children can negatively impact growth, development, and quality of life (QOL) that in some cases result in nonadherence to prescribed therapy, vastly compromising allograft survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcorn J, McNamara PJ (2003) Pharmacokinetics in the newborn. Adv Drug Deliv Rev 55(5):667–686

    Article  CAS  PubMed  Google Scholar 

  • Alemtuzumab (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Genzyme Corporation, Cambridge, MA (2014)

    Google Scholar 

  • Ansari D, Hoglund P, Andersson B, Nilsson J (2015) Comparison of basiliximab and anti-thymocyte globulin as induction therapy in pediatric heart transplantation: a survival analysis. J Am Heart Assoc 5(1). https://doi.org/10.1161/JAHA.115.002790

  • Balfour IC, Srun SW, Wood EG, Belsha CW, Marshall DL, Ferdman BR (2006) Early renal benefit of rapamycin combined with reduced calcineurin inhibitor dose in pediatric heart transplantation patients. J Heart Lung Transplant 25(5):518–522

    Article  PubMed  Google Scholar 

  • Barama A et al (2000) Absorption profiling of cyclosporine therapy for de nova kidney transplantation: a prospective randomized study comparing sparse sampling to trough monitoring [abstract no. 190]. Transplantation 69(Suppl):S162

    Article  Google Scholar 

  • Basiliximab (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Novartis Pharmaceuticals Corporation, East Hanover (2005)

    Google Scholar 

  • Basso MS, Subramaniam P, Tredger M et al (2011) Sirolimus as renal and immunological rescue agent in pediatric liver transplant recipients. Pediatr Transplant 15(7):722–727

    Article  CAS  PubMed  Google Scholar 

  • Baxter JD (1992) The effects of glucocorticoid therapy. Hosp Pract (Off Ed) 27(9):111–114. 115–118, 123 passim

    Article  CAS  Google Scholar 

  • Becker-Cohen R, Ben-Shalom E, Rinat C, Feinstein S, Geylis M, Frishberg Y (2015) Severe neutropenia in children after renal transplantation: incidence, course, and treatment with granulocyte colony-stimulating factor. Pediatr Nephrol 30(11):2029–2036

    Article  PubMed  Google Scholar 

  • Behnke-Hall K, Bauer J, Thul J et al (2011) Renal function in children with heart transplantation after switching to CNI-free immunosuppression with everolimus. Pediatr Transplant 15(8):784–789

    Article  CAS  PubMed  Google Scholar 

  • Benfield MR, Bartosh S, Ikle D et al (2010) A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant 10(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Billing H, Burmeister G, Plotnicki L et al (2013) Longitudinal growth on an everolimus- versus an MMF-based steroid-free immunosuppressive regimen in paediatric renal transplant recipients. Transpl Int 26(9):903–909

    Article  CAS  PubMed  Google Scholar 

  • Blydt-Hansen TD, Gibson IW, Birk PE (2010) Histological progression of chronic renal allograft injury comparing sirolimus and mycophenolate mofetil-based protocols. A single-center, prospective, randomized, controlled study. Pediatr Transplant 14(7):909–918

    Article  CAS  PubMed  Google Scholar 

  • Bonnefoy-Berard N, Vincent C, Revillard JP (1991) Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins. Transplantation 51(3):669–673

    Article  CAS  PubMed  Google Scholar 

  • Bowles A, Keane J, Ernest T, Clapham D, Tuleu C (2010) Specific aspects of gastro-intestinal transit in children for drug delivery design. Int J Pharm 395(1–2):37–43

    Article  CAS  PubMed  Google Scholar 

  • Brooks E, Tett SE, Isbel NM, Staatz CE (2016) Population pharmacokinetic modelling and bayesian estimation of tacrolimus exposure: is this clinically useful for dosage prediction yet? Clin Pharmacokinet 55(11):1295–1335

    Article  CAS  PubMed  Google Scholar 

  • Brouwer KL, Aleksunes LM, Brandys B et al (2015) Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther 98(3):266–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas-Melley AT, Falkenstein KP, Flynn LM, Ziegler VL, Dunn SP (2004) Improvement in renal function and rejection control in pediatric liver transplant recipients with the introduction of sirolimus. Pediatr Transplant 8(4):362–366

    Article  CAS  PubMed  Google Scholar 

  • CellCept [Package Insert] [webpage on the internet], ed. Highlights of prescribing information. Genentech USA, South San Francisco (2015)

    Google Scholar 

  • Chinnock TJ, Shankel T, Deming D et al (2011) Calcineurin inhibitor minimization using sirolimus leads to improved renal function in pediatric heart transplant recipients. Pediatr Transplant 15(7):746–749

    Article  CAS  PubMed  Google Scholar 

  • Ciancio G, Burke GW, Gaynor JJ et al (2004) The use of campath-1H as induction therapy in renal transplantation: preliminary results. Transplantation 78(3):426–433

    Article  CAS  PubMed  Google Scholar 

  • Coelho T, Tredger M, Dhawan A (2012) Current status of immunosuppressive agents for solid organ transplantation in children. Pediatr Transplant 16(2):106–122

    Article  CAS  PubMed  Google Scholar 

  • Colvin MM, Cook JL, Chang P et al (2015) Antibody-mediated rejection in cardiac transplantation: emerging knowledge in diagnosis and management: a scientific statement from the American heart association. Circulation 131(18):1608–1639

    Article  PubMed  Google Scholar 

  • Colvin M, Smith JM, Skeans MA et al (2017) OPTN/SRTR 2015 annual data report: heart. Am J Transplant 17:286–356

    Article  PubMed  Google Scholar 

  • Cransberg K, Marlies Cornelissen EA, Davin JC et al (2005) Improved outcome of pediatric kidney transplantations in the Netherlands – effect of the introduction of mycophenolate mofetil? Pediatr Transplant 9(1):104–111

    Article  PubMed  Google Scholar 

  • Crins ND, Rover C, Goralczyk AD, Friede T (2014) Interleukin-2 receptor antagonists for pediatric liver transplant recipients: a systematic review and meta-analysis of controlled studies. Pediatr Transplant 18(8):839–850

    Article  CAS  PubMed  Google Scholar 

  • Crowson CN, Reed RD, Shelton BA, MacLennan PA, Locke JE (2017) Lymphocyte-depleting induction therapy lowers the risk of acute rejection in African American pediatric kidney transplant recipients. Pediatr Transplant 21(1). https://doi.org/10.1111/petr.12823. Epub 2016 Oct 3

  • De Simone P, Nevens F, De Carlis L et al (2012) Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant 12(11):3008–3020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dervieux T, Blanco JG, Krynetski EY, Vanin EF, Roussel MF, Relling MV (2001) Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res 61(15):5810–5816

    CAS  PubMed  Google Scholar 

  • Dhawan A (2011) Immunosuppression in pediatric liver transplantation: are little people different? Liver Transpl 17(Suppl 3):S13–S19

    Article  PubMed  Google Scholar 

  • Djamali A, Kaufman DB, Ellis TM, Zhong W, Matas A, Samaniego M (2014) Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am J Transplant 14(2):255–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuBuske LM (2005) The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf 28(9):789–801

    Article  CAS  PubMed  Google Scholar 

  • Ekberg H, Tedesco-Silva H, Demirbas A et al (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357(25):2562–2575

    Article  CAS  PubMed  Google Scholar 

  • Elbarbry FA, Marfleet T, Shoker AS (2008) Drug-drug interactions with immunosuppressive agents: review of the in vitro functional assays and role of cytochrome P450 enzymes. Transplantation 85(9):1222–1229

    Article  CAS  PubMed  Google Scholar 

  • Emoto C, Vinks AA, Fukuda T (2016) Risk assessment of drug-drug interactions of calcineurin inhibitors affecting sirolimus pharmacokinetics in renal transplant patients. Ther Drug Monit 38(5):607–613

    Article  CAS  PubMed  Google Scholar 

  • Ettenger RB, Grimm EM (2001) Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis 38(4 Suppl 2):S22–S28

    Article  CAS  PubMed  Google Scholar 

  • Ettenger R, Hoyer PF, Grimm P et al (2008) Multicenter trial of everolimus in pediatric renal transplant recipients: results at three year. Pediatr Transplant 12(4):456–463

    Article  CAS  PubMed  Google Scholar 

  • Fasolo A, Sessa C (2012) Targeting mTOR pathways in human malignancies. Curr Pharm Des 18(19):2766–2777

    Article  CAS  PubMed  Google Scholar 

  • Ferraris JR, Ghezzi LF, Vallejo G, Piantanida JJ, Araujo JL, Sojo ET (2005) Improved long-term allograft function in pediatric renal transplantation with mycophenolate mofetil. Pediatr Transplant 9(2):178–182

    Article  CAS  PubMed  Google Scholar 

  • Filler G, Mai I (2000) Limited sampling strategy for mycophenolic acid area under the curve. Ther Drug Monit 22(2):169–173

    Article  CAS  PubMed  Google Scholar 

  • Focosi D, Maggi F, Pistello M, Boggi U, Scatena F (2011) Immunosuppressive monoclonal antibodies: current and next generation. Clin Microbiol Infect 17(12):1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Friend PJ (2013) Alemtuzumab induction therapy in solid organ transplantation. Transplant Res 2(Suppl 1):S5.-1440-2-S1-S5. Epub 2013 Nov 20

    Google Scholar 

  • Ganschow R, Pape L, Sturm E et al (2013) Growing experience with mTOR inhibitors in pediatric solid organ transplantation. Pediatr Transplant 17(7):694–706

    CAS  PubMed  Google Scholar 

  • Ganschow R, Pollok JM, Jankofsky M, Junge G (2014) The role of everolimus in liver transplantation. Clin Exp Gastroenterol 7:329–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaston RS (2006) Current and evolving immunosuppressive regimens in kidney transplantation. Am J Kidney Dis 47(4 Suppl 2):S3–21

    Article  CAS  PubMed  Google Scholar 

  • Gibelli NE, Tannuri U, Pinho-Apezzato ML et al (2009) Sirolimus in pediatric liver transplantation: a single-center experience. Transplant Proc 41(3):901–903

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JF, Jeewa A, Dreyer WJ et al (2014) Postoperative complications associated with perioperative sirolimus prior to pediatric cardiac retransplantation. J Pediatr Pharmacol Ther 19(1):30–34

    PubMed  PubMed Central  Google Scholar 

  • Grushkin C, Mahan JD, Mange KC, Hexham JM, Ettenger R (2013) De novo therapy with everolimus and reduced-exposure cyclosporine following pediatric kidney transplantation: a prospective, multicenter, 12-month study. Pediatr Transplant 17(3):237–243

    Article  CAS  PubMed  Google Scholar 

  • Halloran PF (2004) Immunosuppressive drugs for kidney transplantation. N Engl J Med 351(26):2715–2729

    Article  CAS  PubMed  Google Scholar 

  • Hanaway MJ, Woodle ES, Mulgaonkar S et al (2011) Alemtuzumab induction in renal transplantation. N Engl J Med 364(20):1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Hardinger KL, Sunderland D, Wiederrich JA (2016) Belatacept for the prophylaxis of organ rejection in kidney transplant patients: an evidence-based review of its place in therapy. Int J Nephrol Renovasc Dis 9:139–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harmon W, Meyers K, Ingelfinger J et al (2006) Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation. J Am Soc Nephrol 17(6):1735–1745

    Article  CAS  PubMed  Google Scholar 

  • Hart A, Smith JM, Skeans MA et al (2017) OPTN/SRTR 2015 annual data report: kidney. Am J Transplant 17:21–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffron TG, Pescovitz MD, Florman S et al (2007) Once-daily tacrolimus extended-release formulation: 1-year post-conversion in stable pediatric liver transplant recipients. Am J Transplant 7(6):1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118(2):250–267

    Article  CAS  PubMed  Google Scholar 

  • Hocker B, Weber LT, Bunchman T, Rashford M, Tonshoff B, Tricontinental MMF (2005) Suspension study group. Mycophenolate mofetil suspension in pediatric renal transplantation: three-year data from the tricontinental trial. Pediatr Transplant 9(4):504–511

    Article  PubMed  CAS  Google Scholar 

  • Hocker B, Feneberg R, Kopf S et al (2006) SRL-based immunosuppression vs. CNI minimization in pediatric renal transplant recipients with chronic CNI nephrotoxicity. Pediatr Transplant 10(5):593–601

    Article  PubMed  CAS  Google Scholar 

  • Hocker B, van Gelder T, Martin-Govantes J et al (2011) Comparison of MMF efficacy and safety in paediatric vs. adult renal transplantation: subgroup analysis of the randomised, multicentre FDCC trial. Nephrol Dial Transplant 26(3):1073–1079

    Article  PubMed  Google Scholar 

  • Hoyer PF et al (1996) Conversion from Sandimmune to Neoral and induction therapy with Neoral in pediatric renal transplant recipients. Transplant Proc 28(4):2259–2261

    CAS  PubMed  Google Scholar 

  • Hoyer PF, Ettenger R, Kovarik JM et al (2003) Everolimus in pediatric de nova renal transplant patients. Transplantation 75(12):2082–2085

    Article  PubMed  Google Scholar 

  • Ibrahim RB, Liu C, Cronin SM et al (2007) Drug removal by plasmapheresis: an evidence-based review. Pharmacotherapy 27(11):1529–1549

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Rivera C, Avitzur Y, Fecteau AH, Jones N, Grant D, Ng VL (2004) Sirolimus for pediatric liver transplant recipients with post-transplant lymphoproliferative disease and hepatoblastoma. Pediatr Transplant 8(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Jungraithmayr T, Staskewitz A, Kirste G et al (2003) Pediatric renal transplantation with mycophenolate mofetil-based immunosuppression without induction: results after three years. Transplantation 75(4):454–461

    Article  CAS  PubMed  Google Scholar 

  • Jungraithmayr TC, Wiesmayr S, Staskewitz A et al (2007) Five-year outcome in pediatric patients with mycophenolate mofetil-based renal transplantation. Transplantation 83(7):900–905

    Article  CAS  PubMed  Google Scholar 

  • Kaabak MM, Babenko NN, Samsonov DV, Sandrikov VA, Maschan AA, Zokoev AK (2013) Alemtuzumab induction in pediatric kidney transplantation. Pediatr Transplant 17(2):168–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamel M, Kadian M, Srinivas T, Taber D, Posadas Salas MA (2016) Tacrolimus confers lower acute rejection rates and better renal allograft survival compared to cyclosporine. World J Transplant 6(4):697–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group (2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 9(Suppl 3):S1–155

    Google Scholar 

  • Kim IK, Choi J, Vo AA, et al (2017) Safety and efficacy of alemtuzumab induction in highly sensitized pediatric renal transplant recipients. Transplantation 101; 883–809

    Article  CAS  PubMed  Google Scholar 

  • Kim WR, Lake JR, Smith JM et al (2017) OPTN/SRTR 2015 annual data report: liver. Am J Transplant 17:174–251

    Article  PubMed  Google Scholar 

  • Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43(2):83–95

    Article  CAS  PubMed  Google Scholar 

  • Kizilbash S, Claes D, Ashoor I, et al (2017) Bortezomib in the treatment of antibody-mediated rejection in pediatric kidney transplant recipients: a multicenter midwest pediatric nephrology consortium study. Pediatr Transplant 21(3):1–8

    Article  CAS  Google Scholar 

  • Kovarik JM, Curtis JJ, Hricik DE, Pescovitz MD, Scantlebury V, Vasquez A (2006) Differential pharmacokinetic interaction of tacrolimus and cyclosporine on everolimus. Transplant Proc 38(10):3456–3458

    Article  CAS  PubMed  Google Scholar 

  • Krischock L, Marks SD (2010) Induction therapy: why, when, and which agent? Pediatr Transplant 14(3):298–313

    Article  CAS  PubMed  Google Scholar 

  • Kuypers DR, Le Meur Y, Cantarovich M et al (2010) Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol 5(2):341–358

    Article  CAS  PubMed  Google Scholar 

  • Leape LL, Bates DW, Cullen DJ et al (1995) Systems analysis of adverse drug events. ADE prevention study group. JAMA 274(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Lerch C, Kanzelmeyer NK, Ahlenstiel-Grunow T et al (2017) Belatacept after kidney transplantation in adolescents: a retrospective study. Transpl Int 30(1): 494–501

    Article  CAS  PubMed  Google Scholar 

  • Levine MH, Abt PL (2012) Treatment options and strategies for antibody mediated rejection after renal transplantation. Semin Immunol 24(2):136–142

    Article  CAS  PubMed  Google Scholar 

  • Loar RW, Driscoll DJ, Kushwaha SS et al (2013) Empiric switch from calcineurin inhibitor to sirolimus-based immunosuppression in pediatric heart transplantation recipients. Pediatr Transplant 17(8):794–799

    Article  CAS  PubMed  Google Scholar 

  • Lobach NE, Pollock-Barziv SM, West LJ, Dipchand AI (2005) Sirolimus immunosuppression in pediatric heart transplant recipients: a single-center experience. J Heart Lung Transplant 24(2):184–189

    Article  PubMed  Google Scholar 

  • Magliocca JF, Knechtle SJ (2006) The evolving role of alemtuzumab (campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int 19(9):705–714

    Article  CAS  PubMed  Google Scholar 

  • Mahalati K, Kahan BD (2001) Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 40(8):573–585

    Article  CAS  PubMed  Google Scholar 

  • Manitpisitkul W, McCann E, Lee S, Weir MR (2009) Drug interactions in transplant patients: what everyone should know. Curr Opin Nephrol Hypertens 18(5):404–411

    Article  PubMed  Google Scholar 

  • Matalova P, Urbanek K, Anzenbacher P (2016) Specific features of pharmacokinetics in children. Drug Metab Rev 48(1):70–79

    Article  CAS  PubMed  Google Scholar 

  • Matthews K, Gossett J, Kappelle PV, Jellen G, Pahl E (2010) Indications, tolerance and complications of a sirolimus and calcineurin inhibitor immunosuppression regimen: intermediate experience in pediatric heart transplantation recipients. Pediatr Transplant 14(3):402–408

    Article  CAS  PubMed  Google Scholar 

  • McDonald RA, Smith JM, Ho M et al (2008) Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant 8(5):984–989

    Article  CAS  PubMed  Google Scholar 

  • McLeod HL, Siva C (2002) The thiopurine S-methyltransferase gene locus – implications for clinical pharmacogenomics. Pharmacogenomics 3(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Medeiros M et al (1999) Limited sampling model for area-under-the-curve monitoring in pediatric patients receiving either Sandimmune or Neoral cyclosporin A oral formulations. Pediatr Transplant 3(3):225–230

    Article  CAS  PubMed  Google Scholar 

  • Mehrabi A, Mood Z, Sadeghi M et al (2007) Thymoglobulin and ischemia reperfusion injury in kidney and liver transplantation. Nephrol Dial Transplant 22(Suppl 8):viii54–viii60

    PubMed  Google Scholar 

  • Miloh T, Barton A, Wheeler J et al (2017) Immunosuppression in pediatric liver transplant recipients: Unique aspects. Liver Transpl 23(2):244–256

    Article  PubMed  Google Scholar 

  • Monaco AP (1989) Immunosuppression and tolerance for clinical organ allografts. Curr Opin Immunol 1(6):1174–1177

    Article  CAS  PubMed  Google Scholar 

  • Morrow WR, Frazier EA, Mahle WT et al (2012) Rapid reduction in donor-specific anti-human leukocyte antigen antibodies and reversal of antibody-mediated rejection with bortezomib in pediatric heart transplant patients. Transplantation 93(3):319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naesens M, Berger S, Biancone L et al (2016) Lymphocyte-depleting induction and steroid minimization after kidney transplantation: a review. Nefrologia 36(5):469–480

    Article  PubMed  Google Scholar 

  • Nielsen D, Briem-Richter A, Sornsakrin M, Fischer L, Nashan B, Ganschow R (2011) The use of everolimus in pediatric liver transplant recipients: first experience in a single center. Pediatr Transplant 15(5):510–514

    Article  CAS  PubMed  Google Scholar 

  • Noureldeen T, Albekioni Z, Machado L et al (2014) Alemtuzumab induction and antibody-mediated rejection in kidney transplantation. Transplant Proc 46(10):3405–3407

    Article  CAS  PubMed  Google Scholar 

  • Nulojix® [Package Insert] [webpage on the Internet], ed. Highlights of prescribing information. Bristol-Myers Squibb Company, Princeton (2016)

    Google Scholar 

  • O’Leary JG, Samaniego M, Barrio MC et al (2016) The influence of immunosuppressive agents on the risk of de novo donor-specific HLA antibody production in solid organ transplant recipients. Transplantation 100(1):39–53

    Article  PubMed  CAS  Google Scholar 

  • Palleria C, Di Paolo A, Giofre C et al (2013) Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 18(7):601–610

    PubMed  PubMed Central  Google Scholar 

  • Pape L, Offner G, Kreuzer M et al (2010) De novo therapy with everolimus, low-dose ciclosporine A, basiliximab and steroid elimination in pediatric kidney transplantation. Am J Transplant 10(10):2349–2354

    Article  CAS  PubMed  Google Scholar 

  • Pape L, Heidotting N, Ahlenstiel T (2011a) Once-daily tacrolimus extended-release formulation: 1 year after conversion in stable pediatric kidney transplant recipients. Int J Nephrol 2011:126251

    Article  PubMed  PubMed Central  Google Scholar 

  • Pape L, Lehner F, Blume C, Ahlenstiel T (2011b) Pediatric kidney transplantation followed by de novo therapy with everolimus, low-dose cyclosporine A, and steroid elimination: 3-year data. Transplantation 92(6):658–662

    Article  CAS  PubMed  Google Scholar 

  • Park SI, Felipe CR, Pinheiro-Machado PG, Garcia R, Tedesco-Silva H Jr, Medina-Pestana JO (2007) Circadian and time-dependent variability in tacrolimus pharmacokinetics. Fundam Clin Pharmacol 21(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • Pescovitz MD et al (2008) Safety and pharmacokinetics of daclizumab in pediatric renal transplant recipients. Pediatr Transplant 12(4):447–455

    Article  CAS  PubMed  Google Scholar 

  • Rapamune® (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Pfizer, Philadelphia (2016)

    Google Scholar 

  • Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids – new mechanisms for old drugs. N Engl J Med 353(16):1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Rossano JW, Jefferies JL, Pahl E et al (2016) Use of sirolimus in pediatric heart transplant patients: a multi-institutional study from the pediatric heart transplant study group. J Heart Lung Transplant

    Google Scholar 

  • Ruan V, Czer LS, Awad M et al (2017) Use of anti-thymocyte globulin for induction therapy in cardiac transplantation: a review. Transplant Proc 49(2):253–259

    Article  CAS  PubMed  Google Scholar 

  • Sage DP, Kulczar C, Roth W, Liu W, Knipp GT (2014) Persistent pharmacokinetic challenges to pediatric drug development. Front Genet 5:281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sam T, Gabardi S, Tichy EM (2013) Risk evaluation and mitigation strategies: a focus on belatacept. Prog Transplant 23(1):64–70

    Article  PubMed  Google Scholar 

  • van Sandwijk MS, Bemelman FJ, Ten Berge IJ (2013) Immunosuppressive drugs after solid organ transplantation. Neth J Med 71(6):281–289

    PubMed  Google Scholar 

  • Sarwal MM et al (2012) Complete steroid avoidance is effective and safe in children with renal transplants: a multicenter randomized trial with three-year follow-up. Am J Transplant 12(10):2719–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schena FP, Pascoe MD, Alberu J et al (2009) Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 87(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114(3):549–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S, Verma P (2016) Overview of pregnancy in renal transplant patients. Int J Nephrol 2016:4539342

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JM, Skeans MA, Horslen SP et al (2017) OPTN/SRTR 2015 annual data report: intestine. Am J Transplant 17:252–285

    Article  PubMed  Google Scholar 

  • Solu-MedrolL®[Package Insert] (webpage on the internet), ed. SOLU-MEDROL® (methylprednisolone sodium succinate for injection, USP). Pfizer, New York (2011)

    Google Scholar 

  • Staskewitz A, Kirste G, Tonshoff B et al (2001) Mycophenolate mofetil in pediatric renal transplantation without induction therapy: results after 12 months of treatment. German pediatric renal transplantation study group. Transplantation 71(5):638–644

    Article  CAS  PubMed  Google Scholar 

  • Sung J, Barry JM, Jenkins R et al (2013) Alemtuzumab induction with tacrolimus monotherapy in 25 pediatric renal transplant recipients. Pediatr Transplant 17(8):718–725

    Article  CAS  PubMed  Google Scholar 

  • Supe-Markovina K, Melquist JJ, Connolly D et al (2014) Alemtuzumab with corticosteroid minimization for pediatric deceased donor renal transplantation: a seven-yr experience. Pediatr Transplant 18(4):363–368

    Article  CAS  PubMed  Google Scholar 

  • Tacrolimus Prograf® (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Astellas Pharma US, Inc, Northbrook (2015)

    Google Scholar 

  • Thymoglobulin® [Package Insert] [webpage on the internet], ed. Highlights of prescribing information. Genzyme Corporation, Cambridge MA (2017)

    Google Scholar 

  • Tsampalieros A, Knoll GA, Molnar AO, Fergusson N, Fergusson DA (2016) Corticosteroid use and growth after pediatric solid organ transplantation: a systematic review and meta-analysis. Transplantation

    Google Scholar 

  • Turner AP, Knechtle SJ (2013) Induction immunosuppression in liver transplantation: a review. Transpl Int 26(7):673–683

    Article  CAS  PubMed  Google Scholar 

  • Valapour M, Skeans MA, Smith JM et al (2017) OPTN/SRTR 2015 annual data report: lung. Am J Transplant 17:357–424

    Article  PubMed  Google Scholar 

  • Vethe NT, Midtvedt K, Asberg A, Amundsen R, Bergan S (2011) Drug interactions and immunosuppression in organ transplant recipients. Tidsskr Nor Laegeforen 131(20):2000–2003

    Article  PubMed  Google Scholar 

  • Vlachopanos G, Bridson JM, Sharma A, Halawa A (2016) Corticosteroid minimization in renal transplantation: careful patient selection enables feasibility. World J Transplant 6(4):759–766

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber LT, Shipkova M, Armstrong VW et al (2002) Comparison of the emit immunoassay with HPLC for therapeutic drug monitoring of mycophenolic acid in pediatric renal-transplant recipients on mycophenolate mofetil therapy. Clin Chem 48(3):517–525

    CAS  PubMed  Google Scholar 

  • Weber LT, Hoecker B, Armstrong VW, Oellerich M, Tonshoff B (2008) Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit 30(5):570–575

    Article  CAS  PubMed  Google Scholar 

  • Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC (2005) Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Datab Syst Rev 4(4):CD003961

    Google Scholar 

  • Zinn MD, L’Ecuyer TJ, Fagoaga OR, Aggarwal S (2014) Bortezomib use in a pediatric cardiac transplant center. Pediatr Transplant 18(5):469–476

    Article  CAS  PubMed  Google Scholar 

  • Zortress® (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Novartis Pharmaceuticals Corporation, East Hanover (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Nemeth .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Newland, D.M., Nemeth, T.L. (2018). Induction and Standard Immunosuppression. In: Dunn, S., Horslen, S. (eds) Solid Organ Transplantation in Infants and Children. Organ and Tissue Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-07284-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07284-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07283-8

  • Online ISBN: 978-3-319-07284-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics