Skip to main content

Generalized Scaling Operators in White Noise Analysis and Applications to Hamiltonian Path Integrals with Quadratic Action

  • Conference paper
  • First Online:
Stochastic and Infinite Dimensional Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

We give an outlook, how to realize the ideas of complex scaling from [1517] to phase space path integrals in the framework of White Noise Analysis. The idea of this scaling method goes back to [9]. Therefore we extend the concept complex scaling to scaling with suitable bounded operators.

On the occasion of the 75th birthday of Ludwig Streit

This work is supported by the FCT-project: PTDC/MAT-STA/1284/2012

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albeverio, S., Guatteri, G., Mazzucchi, S.: Phase space Feynman path integrals. J. Math. Phys. 43(6), 2847–2857 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Guatteri, G., Mazzucchi, S.: A representation of the Belavkin equation via phase space Feynman path integrals. IDAQP 7(04), 507–526 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Høegh-Krohn, R., Mazzucchi, S.: Mathematical Theory of Feynman Path Integrals: An Introduction. Lecture Notes in Mathematics, vol. 523. Springer Verlag, Berlin/Heidelberg/New York (2008)

    Google Scholar 

  4. Berezansky, Y.M., Kondratiev, Y.G.: Spectral methods in infinite-dimensional analysis. Vol. 2, Mathematical Physics and Applied Mathematics, vol. 12/2. Kluwer Academic, Dordrecht (1995). Translated from the 1988 Russian original by P.V. Malyshev and D.V. Malyshev and revised by the authors. MR1340627 (96d:46001b)

    Google Scholar 

  5. Bock, W.: Hamiltonian path integrals in momentum space representation via white noise techniques. Rep. Math. Phys. 73(1), 91–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bock, W., Grothaus, M.: A white noise approach to phase space Feynman path integrals. Theor. Probab. Math. Stat. 85, 7–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bock, W., Grothaus, M.: The Hamiltonian Path Integrand for the Charged Particle in a Constant Magnetic Field as White Noise Distribution, pp. 1–19 (2013). http://arxiv.org/abs/1307.3478

  8. DeWitt-Morette, C., Maheshwari, A., Nelson, B.: Path integration in phase space. Gen. Relativ. Gravit. 8(8), 581–593 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doss, H.: Sur une Resolution Stochastique de l’Equation de Schrödinger à Coefficients Analytiques. Commun. Mat. Phys. 73, 247–264 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948). MR0026940 (10,224b)

    Google Scholar 

  11. Feynman, R.P.: An operator calculus having applications in quantum electrodynamics. Phys. Rev. 84(1), 108–124 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, London/New York (1965)

    MATH  Google Scholar 

  13. Gel’fand, I.M., Vilenkin, N.Ya.: Generalized Functions, vol. 4. Academic, New York/London (1968)

    Google Scholar 

  14. Grothaus, M., Streit, L.: Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis. Rep. Math. Phys. 44(3), 381–405 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grothaus, M., Streit, L., Vogel, A.: Feynman integrals as hida distributions: the case of non-perturbative potentials. SMF, Asterisque 327 (2009). Dai X. (ed.) et al., From Probability to Geometry I. FestSchrift in Honor of the 60th Birthday of Jean-Michel Bismutth

    Google Scholar 

  16. Grothaus, M., Streit, L., Vogel, A.: The complex scaled Feynman–kac formula for singular initial distributions. Stochastics 84(2–3), 347–366 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Grothaus, M., Vogel, A.: The Feynman integrand as a white noise distribution beyond perturbation theory. In: Bernido, C.C. et al. (ed.) Stochastics and Quantum Dynamics in Biomolecular Systems, AIP Conference Proceedings, vol. 1021, pp. 25–33 (2008)

    Article  Google Scholar 

  18. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White Noise. An infinite dimensional calculus. Kluwer Academic, Dordrecht/Boston/London (1993)

    Book  MATH  Google Scholar 

  19. Hida, T., Streit, L.: Generalized brownian functionals and the Feynman integral. Stoch. Proc. Appl. 16, 55–69 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Hida, T.: Brownian Motion. Applications of Mathematics, vol. 11. Springer-Verlag, New York (1980). Translated from the Japanese by the author and T. P. Speed. MR562914 (81a:60089)

    Google Scholar 

  21. Khandekar, D.C., Lawande, S.V.: Feynman path integrals: some exact results and applications. Phys. Rep. 137(2), 115–229 (1986)

    Article  MathSciNet  Google Scholar 

  22. Klauder, J.R., Daubechies, I.: Measures for path integrals. Phys. Rev. Lett. 48(3), 117–120 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klauder, J.R., Daubechies, I.: Quantum mechanical path integrals with Wiener measures for all polynomial Hamiltonians. Phys. Rev. Lett. 52(14), 1161–1164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kolokoltsov, V.N.: Semiclassical Analysis for Diffusions and Stochastic Processes. Springer, Berlin/New York (2000)

    Book  MATH  Google Scholar 

  25. Kondratiev, Yu.G.: Spaces of entire functions of an infinite number of variables, connected with the rigging of a Fock space. Selecta Mathematica Sovietica 10(2), 165–180 (1991). Originally published in Spectral Analysis of Differential Operators, Mathematical Institute of the Academy of Sciences of the Ukrainian SSR, Kiev, pp. 18–37 (1980)

    Google Scholar 

  26. Kondratiev, Yu.G., Leukert, P., Potthoff, J., Streit, L., Westerkamp, W.: Generalized functionals in Gaussian spaces: the characterization theorem revisited. J. Funct. Anal. 141(2), 301–318 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumano-Go, N.: Phase space Feynman path integrals with smooth functional derivatives by time slicing approximation. Bull. Sci. Math. 135(8), 936–987 (2011) (English)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuo, H.-H.: White Noise Distribution Theory. CRC Press, Boca Raton/New York/London/Tokyo (1996)

    MATH  Google Scholar 

  29. Lascheck, A., Leukert, P., Streit, L., Westerkamp, W.: More about Donsker’s delta function. Soochow J. Math. 20(3), 401–418 (1994). MR1292245 (95k:60100)

    Google Scholar 

  30. Mazzucchi, S.: Functional–integral solution for the Schrödinger equation with polynomial potential: a white noise approach. IDAQP 14(4), 675–688 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Minlos, R.A.: Generalized random processes and their extension to a measure. Selected Transl. Math. Stat. Prob. 3, 291–313 (1963)

    MathSciNet  Google Scholar 

  32. Obata, N.: White Noise Calculus and Fock Spaces. Vol. 1577 of LNM. Springer Verlag, Berlin/Heidelberg/New York (1994)

    Google Scholar 

  33. Potthoff, J., Streit, L.: A characterization of Hida distributions. J. Funct. Anal. 101, 212–229 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I. Academic, New York/London (1975)

    MATH  Google Scholar 

  35. Rudin, W.: Functional Analysis, 1st edn. International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York (1974). MR1157815 (92k:46001)

    Google Scholar 

  36. Vogel, A.: A new Wick formula for products of white noise distributions and application to Feynman path integrands. Verlag Dr. Hut (2010)

    Google Scholar 

  37. Westerkamp, W.: Recent results in infinite dimensional analysis and applications to Feynman integrals. Ph.D. Thesis University of Bielefeld, pp. 1–140 (1995) http://arxiv.org/abs/math-ph/0302066

Download references

Acknowledgements

Dear Ludwig Streit, I wish you all the best to your 75th birthday. The author would like to thank the organizing and programme committee of the Stochastic and Infinite Dimensional Analysis conference for an interesting and stimulating meeting. The author thanks the FCT for financial support within the project PTDC/MAT-STA/1284/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bock, W. (2016). Generalized Scaling Operators in White Noise Analysis and Applications to Hamiltonian Path Integrals with Quadratic Action. In: Bernido, C., Carpio-Bernido, M., Grothaus, M., Kuna, T., Oliveira, M., da Silva, J. (eds) Stochastic and Infinite Dimensional Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-07245-6_4

Download citation

Publish with us

Policies and ethics