Skip to main content

Low-Rank Cholesky Factor Krylov Subspace Methods for Generalized Projected Lyapunov Equations

  • Chapter
  • First Online:
System Reduction for Nanoscale IC Design

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 20))

Abstract

Large-scale descriptor systems arising from circuit simulation often require model reduction techniques. Among many methods, Balanced Truncation is a popular method for constructing a reduced order model. In the heart of Balanced Truncation methods, a sequence of projected generalized Lyapunov equations has to be solved. In this article we present a general framework for the numerical solution of projected generalized Lyapunov equations using preconditioned Krylov subspace methods based on iterates with a low-rank Cholesky factor representation. This approach can be viewed as alternative to the LRCF-ADI method, a well established method for solving Lyapunov equations. We will show that many well-known Krylov subspace methods such as (F)GMRES, QMR, BICGSTAB and CG can be easily modified to reveal the underlying low-rank structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Matthias Bollhöfer and Yousef Saad. ILUPACK - preconditioning software package. Available online at http://ilupack.tu-bs.de/.ReleaseV2.4,June2011.

  2. 2.

    http://sites.google.com/site/rionutiu2/research/software.

  3. 3.

    http://www.pardiso-project.org.

References

  1. Amestoy, P., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels, R., Stewart, G.: Solution of the matrix equation AX + XB = C. Commun. ACM 15(9), 820–826 (1972)

    Google Scholar 

  3. Benner, P.: Advances in balancing-related model reduction for circuit simulation. In: Roos, J., Costa, L.R.J. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 469–482. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  4. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15(9), 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse–based ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenan, K.E., Campbell, S.L., Petzold, L.R.: The Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. SIAM, Philadelphia (1996)

    Google Scholar 

  7. Damm, T.: Direct methods and ADI preconditioned Krylov subspace methods for generalized Lyapunov equations. Numer. Linear Algebra Appl. 15(9), 853–871 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drmač, Z., Bujanović, Z.: On the failure of rank-revealing QR factorization software – a case study. ACM Trans. Math. Softw. 35(2), 12:1–12:28 (2008)

    Google Scholar 

  9. Eppler, A.K., Bollhöfer, M.: An alternative way of solving large Lyapunov equations. Proc. Appl. Math. Mech. 10(1), 547–548 (2010)

    Article  Google Scholar 

  10. Eppler, A.K., Bollhöfer, M.: Structure-preserving GMRES methods for solving large Lyapunov equations. In: Günther, M., Bartel, A., Brunk, M., Schoeps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 131–136. Springer, Berlin (2012)

    Chapter  Google Scholar 

  11. Freund, R.W.: SPRIM: structure-preserving reduced-order interconnect macromodeling. In: Proceedings of the International Conference on Computer Aided Design (ICCAD), pp. 80–87. IEEE Computer Society, San Jose (2004)

    Google Scholar 

  12. Freund, R., Jarre, F.: A QMR–based interior–point algorithm for solving linear programs. Math. Program. Ser. B 76(1), 183–210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freund, R., Nachtigal, N.: QMR: a quasi-minimal residual method for non-hermitian linear systems. Numer. Math. 60, 315–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in Mathematical Sciences, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  15. Hackbusch, W.: Hierarchische Matrizen. Springer, Berlin/Heidelberg (2009)

    Book  MATH  Google Scholar 

  16. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Sience and Engineering, vol. 45, Chap. 10, pp. 261–306. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  17. Hochbruck, M., Starke, G.: Preconditioned krylov subspace methods for lyapunov matrix equations. SIAM J. Matrix Anal. Appl. 16(1), 156–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ionuţiu, R., Rommes, J., Schilders, W.H.A.: SparseRC: sparsity preserving model reduction for RC circuits with many terminals. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(12), 1828–1841 (2011)

    Article  Google Scholar 

  19. Jaimoukha, I., Kasenally, E.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31(1), 227–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jbilou, K.: Block Krylov subspace methods for large continuous-time algebraic Riccati equations. Numer. Algorithms 34, 339–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jbilou, K.: An Arnoldi based algorithm for large algebraic Riccati equations. Appl. Math. Lett. 19(5), 437–444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jbilou, K.: ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra Appl. 432(10), 2473–2485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jbilou, K., Riquet, A.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415(2–3), 344–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kressner, D., Plešinger, M., Tobler, C.: A preconditioned low-rank CG method for parameter-dependent Lyapunov matrix equations. Technical report, EPFL (2012)

    MATH  Google Scholar 

  26. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic systems. Numer. Math. 90, 117–148 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Levenberg, N., Reichel, L.: A generalized ADI iterative method. Numer. Math. 66, 215–233 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J.R., White, J.: Low rank solution of lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mikkelsen, C.C.K.: Numerical methods for large lyapunov equations. Ph.D. thesis, Purdue University (2009)

    Google Scholar 

  30. Odabasioglu, A., Celik, M., Pileggi, L.T.: PRIMA: passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Circuits Syst. 17(8), 645–654 (1998)

    Google Scholar 

  31. Penzl, T.: Lyapack — a MATLAB toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear-quadratic optimal control problems (2000). Release 1.8 available at http://www.tu-chemnitz.de/mathematik/industrie_technik/downloads/lyapack-1.8.tar.gz

  32. Penzl, T.: A cyclic low-rank smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reis, T., Stykel, T.: PABTEC: passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(9), 1354–1367 (2010)

    Article  Google Scholar 

  34. Reis, T., Stykel, T.: Positive real and bounded real balancing for model reduction of descriptor systems. Int. J. Control 83(1), 74–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  37. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sabino, J.: Solution of large-scale Lyapunov equations via the block modified smith method. Ph.D. thesis, Rice University, Houston, TX (2006)

    Google Scholar 

  39. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Futur. Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  MATH  Google Scholar 

  40. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for symmetric indefinite systems. Electron. Trans. Numer. Anal. 23(1), 158–179 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Simoncini, V.: A new iterative method for solving large-scale lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Starke, G.: Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 28(5), 1432–1445 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Starke, G.: Fejér-Walsh points for rational functions and their use in the ADI iterative method. J. Comput. Appl. Math. 46, 129–141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stykel, T.: Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal. 30, 187–202 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Stykel, T., Reis, T.: Passivity-preserving balanced truncation model reduction of circuit equations. In: Roos, J., Costa, L. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 483–490. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  46. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 107, 87–90 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work reported in this paper was supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03BOPAE4. Responsibility for the contents of this publication rests with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bollhöfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bollhöfer, M., Eppler, A.K. (2017). Low-Rank Cholesky Factor Krylov Subspace Methods for Generalized Projected Lyapunov Equations. In: Benner, P. (eds) System Reduction for Nanoscale IC Design. Mathematics in Industry, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-07236-4_5

Download citation

Publish with us

Policies and ethics