Skip to main content

Classicalization and the Macroscopicity of Quantum Superposition States

  • Chapter
  • First Online:
Macroscopic Matter Wave Interferometry

Part of the book series: Springer Theses ((Springer Theses))

  • 545 Accesses

Abstract

In this chapter I take a broader perspective and turn the question of the classical limitation to heavy-particle interference into the question of the macroscopicity of quantum superposition states in general. The central result of this chapter will be the definition of an objective measure of macroscopicity. It allows us to quantify how macroscopic various quantum superposition states are, which have been or may soon be observed in past and future experiments on mechanical systems.

Under the ideal measure of values there lurks the hard cash.—Karl Marx

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of macroscopicity presented here only applies to quantum systems with a direct classical correspondence in nonrelativistic mechanics. This excludes, by definition, systems of genuinely quantum degrees of freedom such as spins.

  2. 2.

    The normalization \(\text {tr}\left( \rho \right) =1\) implies that the state is a norm-bounded operator. The set of bounded operators \( \mathcal {B} \left( \mathcal {H} \right) \) on a separable Hilbert space \( \mathcal {H} \) is also a Hilbert space.

  3. 3.

    An additional technical assumption is required apart from the semigroup property and the LCPT nature of the one-parameter family \(\left\{ \varPhi _{t}\,|\,\, t\ge 0\right\} \): Expectation values must evolve continuously in time, that is, the function \(\left\langle {\mathsf {A}} \left( t\right) \right\rangle =\text {tr}\left( {\mathsf {A}} \varPhi _{t}\left( \rho \right) \right) \) must be continuous in \(t\) for any state \(\rho \) and any bounded operator \( {\mathsf {A}} \in \mathcal {B} \left( \mathcal {H} \right) \).

  4. 4.

    The unitary representation of time translations in a system with Hamiltonian \( {\mathsf {H}} \) is given by the time evolution operators \( {\mathsf {U}} (t_{g})=\exp \left[ -i {\mathsf {H}} t_{g}/\hbar \right] \). The time translation-covariant Lindblad generator of a modification of the coherent time evolution would require the Lindblad operators to commute with \( {\mathsf {U}} \left( t_{g}\right) \) up to a complex phase.

  5. 5.

    An operator exponential can be split according to \(e^{ {\mathsf {X}} + {\mathsf {Y}} }=e^{ {\mathsf {X}} }e^{ {\mathsf {Y}} }e^{-\left[ {\mathsf {X}} , {\mathsf {Y}} \right] /2}\) when the commutator is a \(\mathbb {C}\)-number. From this follows also the identity \(e^{ {\mathsf {X}} } {\mathsf {Y}} e^{- {\mathsf {X}} }= {\mathsf {Y}} +\left[ {\mathsf {X}} , {\mathsf {Y}} \right] \).

  6. 6.

    Point particles with \(f\left( \varvec{r}\right) =m\delta \left( \varvec{r}\right) \) are not allowed in this model because they would lead to a diverging modification term. One must assume a finite mass density, or finite size, for every particle, even including electrons, for instance.

  7. 7.

    Although plane waves are improper states, i.e. not normalizable, they serve as a helpful idealization in many concrete situations.

  8. 8.

    The coefficient functions could actually share a common phase factor \(\exp \left[ i\theta \left( \varvec{s},\varvec{w}\right) \right] \) which needs not be isotropic. Such a global phase factor in the Lindblad operator \( {\mathsf {L}} ^{(\mathrm S)}\left( \varvec{s},\varvec{w}\right) \) may, however, always be omitted without loss of generality.

  9. 9.

    This corresponds to the \(j\)-summation in the general Galilei-covariant form of the modification (4.21), which is otherwise omitted.

  10. 10.

    It was noted in Sect. 4.1.3.2 that the single-particle modification is characterized by a minimal length scale where it affects superpositions. Smaller-scale coherences are hardly influenced, and the internal dynamics of a sufficiently small compound object should therefore remain unaffected under the same conditions.

  11. 11.

    Invariance with respect to particle exchange is fulfilled if the Lindblad operators \( {\mathsf {L}} ^{(\mathrm S)}\left( \varvec{s},\varvec{w}\right) \) of the modification commute with the exchange of any two out of \(N\) identical particles \(n,m\) up to a complex phase factor \(\exp \left[ i\phi _{nm}\left( \varvec{s},\varvec{w}\right) \right] \). Since this must generally hold for any \(N\ge 2\), all relative phases \(\theta _{n}\) between indistinguishable particles in (4.50) must be set to zero. This makes the Lindblad operators exchange-symmetric sums of single-particle operators.

  12. 12.

    Evidently, I assume that there exist (besides elementary point particles) point-like compound particles whose internal structure remains practically unaffected by the classicalizing effect. This is certainly a weaker prerequisite than establishing a fixed reference set of elementary particles with individual classicalization rates and distribution functions, and it can be justified a posteriori by limiting the strength of the classicalization effect in compliance with experimental observations on the microscopic scale. In practice one should describe electrons, protons, neutrons and nuclei as point particles, or otherwise even femtometer-sized superpositions of elementary particles would be affected. In this case one could keep microscopic systems unaffected only by limiting the classicalization rate of macroscopic systems to unsatisfactorily low values, as was discussed in the case of spontaneous localization models in [44].

  13. 13.

    Spins are finite-dimensional degrees of freedom and their basis states are thus labelled by a single running index \(\sigma \). The classicalizing modification only acts on mechanical degrees of freedom, and the internal dynamics of spin states remains unaffected.

  14. 14.

    Note that the modulated distribution function in (4.75) is not normalized; a renormalization to unity leads to an effective center-of-mass time parameter \(1/\tau _{\mathrm{cm}}<4/\tau _{0}\). Note also that we have to substitute the integration variable \(\varvec{s}\) by \(\varvec{s}/2\) to arrive at the single-particle form (4.33).

  15. 15.

    The approximation ceases to be valid sufficiently close to the origin \(\varvec{s}=\varvec{q}=0\), but we neglect this contribution to the integral over the phase space distribution \(g_{0}\left( s,q\right) \).

  16. 16.

    The \(N\) vectors \(\overline{\varvec{r}}_{n}\) are linearly dependent. They sum up to \(\sum _{n}m_{n}\overline{\varvec{r}}_{n}=0\).

  17. 17.

    This resembles the continuum approximation in [20, 21] for the specific case of spontaneous collapse models.

  18. 18.

    Note that, in particular, the classicalizing modification can only make physical sense if the distribution \(g\left( \varvec{s},\varvec{q}\right) \) is a well-behaved function with finite moments.

  19. 19.

    The thermal state \(\rho =\exp \left( - {\mathbf {\mathsf{{p}}}}^{2}/2mk_{B}T\right) /\left( 2\pi mk_{B}T\right) ^{3/2}\) of a free particle corresponds to the characteristic function \(\chi \left( \varvec{r},\varvec{p}\right) =\delta \left( \varvec{p}\right) \exp \left( -mk_{B}T {\mathbf {\mathsf{{r}}}}^{2}/2\hbar ^{2}\right) \). It is improperly normalized because the spatial coordinate extends over the whole coordinate space \(\mathbb {R}^{3}\). Regardless of this issue, which could be fixed by restricting to a finite volume, with growing temperature \(T\) the peak of the characteristic function around the origin gets more narrow. The same happens to the state under the influence of the classicalizing modification with growing time, which relates to the classicalization-induced diffusion heating discussed before.

  20. 20.

    To see the small-argument limit explicitly, expand the Fourier transform \(\widetilde{g}\left( \varvec{r},\varvec{p}\right) \) of the distribution function to the lowest non-vanishing order around the origin, \(\widetilde{g}\left( \varvec{r},\varvec{p}\right) \approx 1- \mathcal {E} \left[ s^{2} \right] p^{2}/2\hbar ^{2}- \mathcal {E} \left[ q^{2} \right] r^{2}/2\hbar ^{2}\). This leads to

    $$ \mathcal {L} _{1}\left[ \chi \left( \varvec{r},\varvec{p}\right) \right] \approx -\left( \frac{ \mathcal {E} \left[ s^{2} \right] }{2\hbar ^{2}\tau }p^{2}+\frac{ \mathcal {E} \left[ q^{2} \right] }{2\hbar ^{2}\tau }r^{2}\right) \chi \left( \varvec{r},\varvec{p}\right) , $$

    which is equivalent to the diffusion expression (4.101).

  21. 21.

    This case might be appealing as it also conserves the energy of a free particle, i.e. the invariance under time translations.

  22. 22.

    Controllable nonlinear interactions are the crucial ingredient in interference experiments with squeezed multi-component BECs to achieve longer coherence times and better phase sensitivity [54–56].

  23. 23.

    The effective Heisenberg equation of motion for an observable \( {\mathsf {B}} \) is obtained by taking the time derivative of the expectation value, \(\left\langle \partial _{t} {\mathsf {B}} \right\rangle \equiv \partial _{t}\left\langle {\mathsf {B}} \right\rangle =\partial _{t}\text {tr}\left( \rho {\mathsf {B}} \right) \), and using the cyclic property of the trace to shift the master equation \(\partial _{t}\rho =-i\left[ {\mathsf {H}} ,\rho \right] /\hbar + \mathcal {L} \left( \rho \right) \) to \( {\mathsf {B}} \). This results in the conjugate equation \(\partial _{t} {\mathsf {B}} =i\left[ {\mathsf {H}} , {\mathsf {B}} \right] /\hbar + \mathcal {L} ^{{\dagger }}\left( {\mathsf {B}} \right) \), where \( \mathcal {L} ^{{\dagger }}\left( {\mathsf {B}} \right) = \mathcal {L} \left( {\mathsf {B}} \right) \) holds due to the isotropy of the classicalizing modification (4.117).

  24. 24.

    The law of induction tells us that any change of magnetic flux through an open loop induces an electric potential difference \(u=-\mathrm{d}\varPhi /\mathrm{d}t\). Here, the voltage \(u\) must build up across the tunneling junction, which can be regarded as a capacitor \(C\). This is in accordance with the Josephson equation \(\mathrm{d}\varDelta \phi /\mathrm{d}t=2eu/\hbar =2\pi u/\varPhi _{0}\) that generally relates the phase difference with the voltage across a Josephson junction [51]. The voltage gives rise to a charge imbalance \(Q=Cu\) and to a capacitive energy \(E_{C}=Cu^{2}/2\).

  25. 25.

    We restrict our view to s-type superconductors with electrons pairing in a spin singlet state.

  26. 26.

    The momentum spread of the superposition is much smaller than the Fermi wave number \(k_{F}\) as only the momentum states close to the Fermi surface are accessible by electron-phonon scattering. The spatial extension of the superposition is therefore much larger than the de Broglie wavelength \(2\pi /k_{F}\) of the Fermi electrons.

  27. 27.

    Strictly speaking, the BCS ground state does not describe a fixed number of electrons, but rather a distribution of numbers around the expectation value \(N=\langle \mathrm{BCS}| {\mathsf {N}} |\mathrm{BCS}\rangle \). The effect of this uncertain number of electrons can be neglected as \(N\) is very large in most practical cases.

  28. 28.

    Discretized momenta must be used, as introduced in Sect. 4.1.4.6. The Weyl operator \( {\mathsf {W}} \left( \varvec{r},\varvec{v}\right) \) describes a translation of both the position and the momentum coordinate, which transforms the momentum creation operator to \( {\mathsf {W}} \left( \varvec{r},\varvec{v}\right) {\mathsf {c}} _{\sigma }^{{\dagger }}\left( \varvec{k}\right) {\mathsf {W}} ^{{\dagger }}\left( \varvec{r},\varvec{v}\right) \,{=}\,\exp \left( i\varvec{k}\cdot \varvec{r}-m_{e}\varvec{v}\cdot \varvec{r}/2\hbar \right) {\mathsf {c}} _{\sigma }^{{\dagger }}\left( \varvec{k}-m_{e}\varvec{v}/\hbar \right) \), as can be checked in a straightforward calculation using the CCR (4.64).

  29. 29.

    Recall that the observable consequences of the CSL model [20, 21] are described by a specific classicalizing modification of the present form with a Gaussian momentum distribution and no position diffusion, as discussed in Sect. 4.1.3.2.

  30. 30.

    The atom mass is mainly concentrated in the femtometer-sized nucleus, and the small contribution of the electrons is negligible. It can therefore be regarded as a point particle in the present context.

  31. 31.

    One observes the same behaviour in the case of thermal decoherence at low temperatures [69], where the average photon wavelength is greater than the path separation.

  32. 32.

    We must only include those parts of the setup where a loss of coherence in the particle state affects the interference visibility. This excludes, for instance, anything that happens before the first collimation slit in a double-slit experiment representing the point source. In a Talbot-Lau setup we must only consider the passage from the first to the second and from the second to the third grating.

  33. 33.

    The presence of a constant acceleration would only contribute to the phase difference.

  34. 34.

    The kernel is similar to the diffraction kernels used in Chap. 3 to describe near-field interference in the Wigner function representation, except that the integration is over the center position here.

  35. 35.

    The phase sensitivity and the coherence time of the BEC interferometer were increased in a later experiment [52]. However, I estimated a smaller macroscopicity in this case, \(\mu \approx 8.3\), since only \(f=15\,\%\) visibility was found after \(200\,\)ms time of flight.

  36. 36.

    This aspect prevents many-body product states of the form \(|\psi _{N}\rangle \propto \left( |A\rangle +|B\rangle \right) ^{\otimes N}\) from being considered more macroscopic than the single-particle state \(|\psi _{1}\rangle \propto |A\rangle +|B\rangle \). On the other hand, the disconnectivity of a GHZ-type state, \(|\psi \rangle \propto |A\rangle ^{\otimes N}+|B\rangle ^{\otimes N}\), would increase with the number of particles \(N\).

  37. 37.

    This triggered an interesting and illustrative debate on the macroscopicity of many-body quantum phenomena. Leggett’s prime example of a macroscopic quantum effect was the superposition of persistent currents in a superconducting Josephson loop, first observed in [6, 7]. He claimed that the disconnectivity of the measured state was given by the total number of Cooper-paired electrons, more than a billion to be precise, flowing either clockwise or anticlockwise through the loop. A proper many-body analysis, however, reveals that the state is given by a superposition of two slightly displaced but largely overlapping Fermi spheres, as found by Korsbakken et al. [62, 63]. Hence, the vast majority of indistinguishable electrons occupies the same momentum space region in both branches of the superposition, and only a few hundred to thousand are actually disconnected, i.e. found in different states.

References

  1. A.J. Leggett, Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Conden. Matter 14, R415 (2002)

    Article  ADS  Google Scholar 

  2. A. Messiah, Quantum Mechanics (Dover Publications, Mineola 1999)

    Google Scholar 

  3. A.J. Leggett, Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Peters, K. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  5. K.-Y. Chung, S.-W. Chiow, S. Herrmann, S. Chu, H. Müller, Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics. Phys. Rev. D 80, 16002 (2009)

    Article  ADS  Google Scholar 

  6. J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Quantum superposition of distinct macroscopic states. Nature 406, 43 (2000)

    Article  ADS  Google Scholar 

  7. C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Quantum superposition of macroscopic persistent-current states. Science 290, 773 (2000)

    Google Scholar 

  8. T. Hime, P.A. Reichardt, B.L.T. Plourde, T.L. Robertson, C.-E. Wu, A.V. Ustinov, J. Clarke, Solid-state qubits with current-controlled coupling. Science 314, 1427 (2006)

    Article  ADS  Google Scholar 

  9. M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Observation of interference between two bose condensates. Science 275, 637 (1997)

    Article  Google Scholar 

  10. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Dür, C. Simon, J.I. Cirac, Effective size of certain macroscopic quantum superpositions. Phys. Rev. Lett. 89, 210402 (2002)

    Article  Google Scholar 

  12. G. Björk, P.G.L. Mana, A size criterion for macroscopic superposition states. J. Opt. B: Quantum Semiclassical Opt. 6, 429 (2004)

    Article  ADS  Google Scholar 

  13. J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Measurement-based measure of the size of macroscopic quantum superpositions, Phys. Rev. A 75, 42106 (2007)

    Google Scholar 

  14. F. Marquardt, B. Abel, J. von Delft, Measuring the size of a quantum superposition of many-body states. Phys. Rev. A 78, 12109 (2008)

    Article  ADS  Google Scholar 

  15. C.-W. Lee, H. Jeong, Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett. 106, 220401 (2011)

    Article  ADS  Google Scholar 

  16. F. Fröwis, W. Dür, Measures of macroscopicity for quantum spin systems. New J. Phys. 14, 093039 (2012)

    Article  Google Scholar 

  17. S. Nimmrichter, K. Hornberger, Macroscopicity of mechanical quantum superposition states. Phys. Rev. Lett. 110, 160403 (2013)

    Article  ADS  Google Scholar 

  18. L. Diósi, A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377 (1987)

    Article  ADS  Google Scholar 

  19. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  20. G.C. Ghirardi, P. Pearle, A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Bassi, G. Ghirardi, Dynamical reduction models. Phys. Rep. 379, 257 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. K. Kraus, States, Effects, and Operations, in Lecture Notes in Physics, vol. 190, (Springer, Berlin, 1983)

    Google Scholar 

  23. L. Diósi, A Short Course in Quantum Information Theory: an Approach from Theoretical Physics, 2nd edn. (Springer, Berlin, 2010)

    Google Scholar 

  24. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, (Springer, Berlin, 2007)

    Google Scholar 

  25. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.M. Levy-Leblond, Galilei group and nonrelativistic quantum mechanics. J. Math. Phys. 4, 776 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. G.W. Mackey, Induced Representations of Groups and Quantum Mechanics (Lectures given at Scuola Normale, Posa, Italy, 1967) (Benjamin, W. A, 1968)

    Google Scholar 

  29. V. Bargmann, On unitary ray representations of continuous groups. Ann. Math. 59, 1 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Reed, B. Simon, Functional Analysis, vol. 1 Methods of Modern Mathematical Physics, (Academic Press, London, 1981)

    Google Scholar 

  31. A. Barchielli, L. Lanz, Quantum mechanics with only positive-time evolution for an isolated system. Il Nuovo Cimento B 44, 241 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  32. A.S. Holevo, Covariant quantum dynamical semigroups: unbounded generators. Irreversibility Causality Semigroups Rigged Hilbert Spaces 504, 67 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.S. Holevo, A note on covariant dynamical semigroups. Rep. Math. Phys. 32, 211 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. A.S. Holevo, On conservativity of covariant dynamical semigroups. Rep. Math. Phys. 33, 95 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. J.B. Conway, A Course in Functional Analysis (Graduate Texts in Mathematics), 2nd edn. (Springer, Berlin, 1990)

    Google Scholar 

  36. A.S. Holevo, On the structure of covariant dynamical semigroups. J. Funct. Anal. 131, 255 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Caldeira, A. Leggett, Path integral approach to quantum Brownian motion. Phys. A: Stat. Mech. Appl. 121, 587 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  38. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, (Oxford University Press, New York, 2002)

    Google Scholar 

  39. B. Vacchini, K. Hornberger, Quantum linear Boltzmann equation. Phys. Rep. 478, 71 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Joos, H.D. Zeh, The emergence of classical properties through interaction with the environment. Z. Phys. B: Condens. Matter 59, 223 (1985)

    Article  ADS  Google Scholar 

  41. G.C. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Google Scholar 

  42. B. Vacchini, On the precise connection between the GRW master equation and master equations for the description of decoherence. J. Phys. A: Math. Theor. 40, 2463 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. G.C. Ghirardi, O. Nicrosini, A. Rimini, T. Weber, Spontaneous localization of a system of identical particles. Il Nuovo Cimento B 102, 383 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  44. W. Feldmann, R. Tumulka, Parameter diagrams of the GRW and CSL theories of wavefunction collapse. J. Phys. A: Math. Theor. 45, 065304 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  45. B. Robertson, Introduction to field operators in quantum mechanics. Am. J. Phys. 41, 678 (1973)

    Article  ADS  Google Scholar 

  46. F. Schwabl, Advanced Quantum Mechanics (Springer, Berlin, 2008)

    Google Scholar 

  47. J.J. Sakurai, Modern Quantum Mechanics, (Revised Edn) Addison-Wesley, London, 1994)

    Google Scholar 

  48. M. Busse, K. Hornberger, Pointer basis induced by collisional decoherence. J. Phys. A: Math. Theor. 43, 15303 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001)

    Google Scholar 

  50. O. Morsch, M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  51. A.J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems, (Oxford University Press, Oxford, 2006)

    Google Scholar 

  52. G.-B. Jo, Y. Shin, S. Will, T. Pasquini, M. Saba, W. Ketterle, D. Pritchard, M. Vengalattore, M. Prentiss, Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip. Phys. Rev. Lett. 98, 030407 (2007)

    Google Scholar 

  53. H. Wallis, A. Röhrl, M. Naraschewski, A. Schenzle, Phase-space dynamics of Bose condensates: interference versus interaction. Phys. Rev. A 55, 2109 (1997)

    Article  ADS  Google Scholar 

  54. M.F. Riedel, P. Böhi, Y. Li, T.W. Hänsch, A. Sinatra, P. Treutlein, Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170 (2010)

    Article  ADS  Google Scholar 

  55. C. Gross, T. Zibold, E. Nicklas, J. Estève, M.K. Oberthaler, Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165 (2010)

    Article  ADS  Google Scholar 

  56. M. Egorov, R. Anderson, V. Ivannikov, B. Opanchuk, P. Drummond, B. Hall, A. Sidorov, Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate. Phys. Rev. A 84, R021605 (2011)

    Article  ADS  Google Scholar 

  57. M. Naraschewski, H. Wallis, A. Schenzle, J. Cirac, P. Zoller, Interference of Bose condensates. Phys. Rev. A 54, 2185 (1996)

    Article  ADS  Google Scholar 

  58. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

    Google Scholar 

  59. K. Kopitzki, P. Herzog, Einführung in die Festkörperphysik, Vieweg+Teubner Verlag, 2007

    Google Scholar 

  60. A. Leggett, Probing quantum mechanics towards the everyday world: where do we stand? Phys. Scr. T 102, 69 (2002)

    Article  ADS  Google Scholar 

  61. S.E. Shafranjuk, J.B. Ketterson, in Principles of Josephson-Junction-Based Quantum Computation, in Superconductivity, vol. 1, ed by K.H. Bennemann, J. Ketterson (Springer, Berlin 2008), p. 315

    Google Scholar 

  62. J.I. Korsbakken, F.K. Wilhelm, K.B. Whaley, Electronic structure of superposition states in flux qubits. Phys. Scr. T 137, 014022 (2009)

    Article  ADS  Google Scholar 

  63. J.I. Korsbakken, F.K. Wilhelm, K.B. Whaley, The size of macroscopic superposition states in flux qubits. Europhys. Lett. 89, 30003 (2010)

    Article  ADS  Google Scholar 

  64. T. Orlando, J. Mooij, L. Tian, C. van der Wal, L. Levitov, S. Lloyd, J. Mazo, Superconducting persistent-current qubit. Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  65. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. M. Buffa, O. Nicrosini, A. Rimini, Dissipation and reduction effects of spontaneous localization on superconducting states. Found. Phys. Lett. 8, 105 (1995)

    Article  Google Scholar 

  67. R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. S. Nimmrichter, K. Hornberger, P. Haslinger, M. Arndt, Testing spontaneous localization theories with matter-wave interferometry. Phys. Rev. A 83, 43621 (2011)

    Article  ADS  Google Scholar 

  69. K. Hornberger, L. Hackermüller, M. Arndt, Influence of molecular temperature on the coherence of fullerenes in a near-field interferometer. Phys. Rev. A 71, 023601 (2005)

    Article  ADS  Google Scholar 

  70. A.D. Cronin, D.E. Pritchard, Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  71. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Gravitational wave detection with atom interferometry. Phys. Lett. A 678, 37 (2009)

    Article  Google Scholar 

  72. M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, D.E. Pritchard, Optics and interferometry with Na\(_{2}\) molecules. Phys. Rev. Lett. 74, 4783 (1995)

    Google Scholar 

  73. M. Chapman, C. Ekstrom, T. Hammond, J. Schmiedmayer, B. Tannian, S. Wehinger, D. Pritchard, Near-field imaging of atom diffraction gratings: the atomic Talbot effect. Phys. Rev. A 51, R14 (1995)

    Google Scholar 

  74. C.J. Bordé, C. Salomon, S. Avrillier, A. van Lerberghe, C. Bréant, D. Bassi, G. Scoles, Optical Ramsey fringes with traveling waves. Phys. Rev. A 30, 1836 (1984)

    Article  ADS  Google Scholar 

  75. C.J. Bordé, N. Courtier, F. Du Burck, A.N. Goncharov, M. Gorlicki, Molecular interferometry experiments. Phys. Lett. A 188, 187 (1994)

    Article  ADS  Google Scholar 

  76. H. Maier-Leibnitz, T. Springer, Ein interferometer für langsame neutronen. Z. Phys. 167, 386 (1962)

    Article  ADS  Google Scholar 

  77. A. Zeilinger, R. Gaehler, C.G. Shull, W. Treimer, Experimental status and recent results of neutron interference optics. AIP Conf. Proc. 89, 93 (1982)

    Article  ADS  Google Scholar 

  78. D. Keith, M. Schattenburg, H. Smith, D. Pritchard, Diffraction of atoms by a transmission grating. Phys. Rev. Lett. 61, 1580 (1988)

    Article  ADS  Google Scholar 

  79. F. Shimizu, K. Shimizu, H. Takuma, Double-slit interference with ultracold metastable neon atoms. Phys. Rev. A 46, R17 (1992)

    Article  ADS  Google Scholar 

  80. R. Grisenti, W. Schöllkopf, J. Toennies, G. Hegerfeldt, T. Köhler, Determination of atom-surface van der waals potentials from transmission-grating diffraction intensities. Phys. Rev. Lett. 83, 1755 (1999)

    Article  ADS  Google Scholar 

  81. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, Wave-particle duality of C60 molecules. Nature 401, 680 (1999)

    Article  ADS  Google Scholar 

  82. K. Hornberger, J.E. Sipe, M. Arndt, Theory of decoherence in a matter mave Talbot-Lau interferometer. Phys. Rev. A 70, 53608 (2004)

    Article  ADS  Google Scholar 

  83. B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, A. Zeilinger, Matter-wave interferometer for large molecules. Phys. Rev. Lett. 88, 100404 (2002)

    Article  ADS  Google Scholar 

  84. L. Hackermüller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, M. Arndt, Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 90408 (2003)

    Article  ADS  Google Scholar 

  85. K. Hornberger, S. Gerlich, H. Ulbricht, L. Hackermüller, S. Nimmrichter, I.V. Goldt, O. Boltalina, M. Arndt, Theory and experimental verification of Kapitza-Dirac-Talbot-Lau interferometry. New J. Phys. 11, 43032 (2009)

    Google Scholar 

  86. S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)

    Article  ADS  Google Scholar 

  87. O. Romero-Isart, A.C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, J.I. Cirac, Large quantum superpositions and interference of massive nanometer-sized objects. Phys. Rev. Lett. 107, 20405 (2011)

    Article  ADS  Google Scholar 

  88. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

    Google Scholar 

  89. J.D. Teufel, T. Donner, D. Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011)

    Article  ADS  Google Scholar 

  90. J. Chan, T.P.M. Alegre, A.H. Safavi-Naeini, J.T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)

    Article  ADS  Google Scholar 

  91. K. Hammerer, A.S. Sörensen, E.S. Polzik, Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  92. A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, P. Grangier, Generation of optical ‘Schrödinger cats’ from photon number states, Nature 448, 784 (2007)

    Google Scholar 

  93. S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.M. Raimond, S. Haroche, Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510 (2008)

    Article  ADS  Google Scholar 

  94. T. Gerrits, S. Glancy, T.S. Clement, B. Calkins, A.E. Lita, A.J. Miller, A.L. Migdall, S.W. Nam, R.P. Mirin, E. Knill, Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Physical Review A 82, 31802 (2010)

    Article  ADS  Google Scholar 

  95. W.B. Gao, C.Y. Lu, X.C. Yao, P. Xu, O. Gühne, A. Goebel, Y.A. Chen, C.Z. Peng, Z.B. Chen, J.W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nat. Phys. 6, 331 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Nimmrichter .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nimmrichter, S. (2014). Classicalization and the Macroscopicity of Quantum Superposition States. In: Macroscopic Matter Wave Interferometry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07097-1_4

Download citation

Publish with us

Policies and ethics