Skip to main content

Generalized Lax-Hopf Formulas for Cournot Maps and Hamilton-Jacobi-McKendrick Equations

  • Chapter
Analysis and Geometry in Control Theory and its Applications

Part of the book series: Springer INdAM Series ((SINDAMS,volume 11))

  • 1120 Accesses

Abstract

A generalization of Lax-Hopf formula for value functions has been proved by the second author in the case when the Lagrangian depends not only on the velocity, as for the original one, but also on time and velocity. She associated with the Lagrangian another function, called its moderation, for which the Lax-Hopf formula holds true. On the other hand, arrival maps have been introduced in control theory for associating with terminal time and duration a terminal state at which arrives at least one evolution governed by a differential inclusion. Cournot maps provide their departure time and state. They involve “temporal windows”, on which average evolutions and velocities can be measured. A temporal window is coded by a two-dimensional “time-duration” pair, the classical one-dimensional time being a temporal window of zero duration. We associate with a set-valued map another map, called its “Lax-Hopf hull”, generally contained in its closed convex hull, and its “moderation”. If such a set-valued map is the right hand side of differential inclusion governing evolutions, its Lax-Hopf hull governs their average states and velocities on evolving temporal windows and its moderation provides the set of average velocities. Knowing the terminal state, the average velocity provides the departure time and state provided by the Cournot map. A Cournot map, providing all departure states of evolutions arriving at a terminal state at a terminal time, describes mathematically the retrospective and dynamical concept of uncertainty introduced in 1843 by Augustin Cournot. In economics, the Lax-Hop hull associates with average transactions on an investment window the average profit involving the duration of the production process, quasi null for the century of construction of cathedrals to quasi infinite for the transactions performed on the high-frequency markets. Average profits could therefore be used as a basis for a taxation on shareholder value instead of added value. Time averaging processes of evolutions and their velocities on adequate temporal windows may be useful in many problems, such traffic congestion management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Prospective average velocities \(\nabla x(t):= \frac{x(t) - x(0)} {t}\) are distinguished by dropping the right arrow.

  2. 2.

    See [5, 3638] among a myriad of references on time.

  3. 3.

    “What was God doing before He created the Heavens and the Earth?” asked Augustine of Hippo in his confessions. What was the universe behaving before the Big Bang, ask some physicists? Mathematically, one can introduce helicoidal durations which are concatenations of durations \(d_{(T_{i},T_{i}-T_{i-1})}\) on successive temporal windows [T i−1, T i ] (see La valeur n’existe pas. À moins que…, [12]). Introducing the concepts of temporal windows and duration function bypasses the question of origin of time.

  4. 4.

    The max-plus algebra structure on \(\mathbb{R}\) and the hyperspaces (of subsets of a given space) as well provides an adequate framework to study evolutionary problems (see [13] and Evaluation and Stratification of Sets, [14]).

  5. 5.

    See Sect. 14.12, p. 171, of Viability Theory. New Directions, [18].

  6. 6.

    See Sect. 3.3, p. 26.

  7. 7.

    See Theorem 10.2.5, p. 379, of Viability Theory. New Directions, [18].

References

  1. Akian, M., Gaubert, S., Kolokoltsov, V.: Invertibility of functional Galois connections. I. C. R. Acad. Sci. Paris, Sér. I 335, 883–888 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Akian, M., Bapat, R., Gaubert, S.: Max-plus algebras. In: Hogben, L. (ed.) Handbook of Linear Algebra. Discrete Mathematics and Its Applications, vol. 39, Chap. 25. Chapman & Hall, Boca Raton (2006)

    Google Scholar 

  3. Akian, M., David, B., Gaubert, S.: Un théorème de représentation des solutions de viscosité d’une équation d’Hamilton-Jacobi-Bellman ergodique dégénérée sur le tore. C.R. Acad. Sci. Paris, Ser. I 346, 1149–115 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Ancona, F., Cannarsa, P., Nguyen Khai, T.: Compactness estimates for Hamilton-Jacobi equations (to appear)

    Google Scholar 

  5. Andersen, H., Grush, R.: A brief history of time-consciousness: historical precursors to James and Husserl. J. Hist. Philos. 47, 277–307 (2009)

    Article  Google Scholar 

  6. Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic, Dordrecht/Boston (2000)

    Book  MATH  Google Scholar 

  7. Aubin, J.-P.: La mort du devin, l’émergence du démiurge. Essai sur la contingence, la viabilité et l’inertie des systèmes. Éditions Beauchesne (2010)

    Google Scholar 

  8. Aubin, J.-P.: Regulation of births for viability of populations governed by age-structured problems. J. Evol. Equ. 12, 99–117 (2012). doi:http://dx.doi.org/10.1007/s00028-011-0125-z

  9. Aubin, J.-P.: Lax-Hopf formula and Max-Plus properties of solutions to Hamilton-Jacobi equations. Nonlinear Differ. Equ. Appl. (NoDEA) 20, 187–211 (2013). doi:10.1007/s00030-012-0188-8

    Google Scholar 

  10. Aubin, J.-P.: Time and Money. How Long and How Much Money is Needed to Regulate a Viable Economy. Lecture Notes in Economics and Mathematical Systems, vol. 670. Springer, Cham (2013). doi:10.1007/978-3-319-00005-3

    Google Scholar 

  11. Aubin, J.-P.: Chaperoning state evolutions by variable durations. SIAM J. Control Optim. 51, 2081–2101 (2013). doi:http://dx.doi.org/10.1137/120879853 La valeur n’existe pas. À moins que…, [12]

  12. Aubin, J.-P.: La valeur n’existe pas. À moins que Essai sur le temps, l’argent et le hasard (in preparation)

    Google Scholar 

  13. Aubin, J.-P., Désilles, A.: Traffic Networks as Information Systems. A Viability Approach. Springer (2015)

    Google Scholar 

  14. Aubin, J.-P., Dordan, O.: Evaluation and Stratification of Sets (in preparation)

    Google Scholar 

  15. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  16. Aubin, J.-P., Luxi, C.: A quantitative theory of money derived from micro-economic evolutionary processes and constraints (in preparation)

    Google Scholar 

  17. Aubin, J.-P., Bayen, A., Saint-Pierre, P.: Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints. SIAM J. Control Optim. 47, 2348–2380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aubin, J.-P., Bayen, A., Saint-Pierre, P.: Viability Theory. New Directions. Springer, Heidelberg/New York (2011). doi:10.1007/978-3-642-16684-6

    Book  MATH  Google Scholar 

  19. Aubin, J.-P., Luxi, C., Désilles, A.: Cournot maps for intercepting evader evolutions by a Pursuer. Dyn. Games Appl. (2015)

    Google Scholar 

  20. Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15, 1713–1742 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bayen, A.M., Claudel, C., Saint-Pierre, P.: Viability-based computations of solutions to the Hamilton-Jacobi-Bellman equation. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 4416, pp. 645–649. Springer (2007)

    Google Scholar 

  22. Bayen, A.M., Claudel, C., Saint-Pierre, P.: Computations of solutions to the Moskowitz Hamilton-Jacobi-Bellman equation under viability constraints. In: Proceedings of the 46th IEEE Conference on Decision and Control (CDC), New Orleans (2007). Available online at http://www.ce.berkeley.edu/~bayen/conferences/cdc07a.pdf

  23. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  24. Chen, L.: Computation of the “Enrichment” of a Value Functions of an Optimization Problem on Cumulated Transaction-Costs Through a Generalized Lax-Hopf Formula (submitted)

    Google Scholar 

  25. Claudel, C., Bayen, A.M.: Solutions to switched Hamilton-Jacobi equations and conservation laws using hybrid components. In: Egerstedt, M., Mishra, B. (eds.) Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 4981, pp. 101–115. Springer, Berlin/New York (2008)

    Chapter  Google Scholar 

  26. Claudel, C., Bayen, A.M.: Computations of solutions to the Moskowitz Hamilton-Jacobi-Bellman equation under trajectory constraints (2008)

    Google Scholar 

  27. Claudel, C., Bayen, A.M.: Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part 1: theory. IEEE Trans. Autom. Control 55(5), 1142–1157 (2011)

    Google Scholar 

  28. Claudel, C., Bayen, A.M.: Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part 2: computational methods. IEEE Trans. Autom. Control 5(5): 1158–1174 (2011)

    Google Scholar 

  29. Cournot, A.: Exposition de la théorie des chances et des probabilités (1843)

    Google Scholar 

  30. Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Danchin, A.: Hasard et biologie moléculaire (Entretien avec Emile Noël). In: Le hasard aujourd’hui, Le Seuil, pp. 111–125 (1991)

    Google Scholar 

  32. Danchin, A.: La barque de Delphes. Ce que révèle le texte des génomes, Odile Jacob (1998)

    Google Scholar 

  33. Danchin, A.: Les atomistes, in http://www.normalesup.org/~adanchin/causeries/Atomistes.html (unpublished)

  34. Désilles, A.: Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters. Netw. Heterogen. Media 8(3), 707–726 (2013)

    Article  MATH  Google Scholar 

  35. Désilles, A., Frankowska, H.: Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Netw. Heterogen. Media (NHM) 8(3), 727–744 (2013)

    Google Scholar 

  36. Dobbs, H.A.C.: The relation between the time of psychology and the time of physics. Part I. Br. J. Philos. Sci. 2, 122–141 (1951)

    Article  Google Scholar 

  37. Dobbs, H.A.C.: The relation between the time of psychology and the time of physics. Part II. Br. J. Philos. Sci. 2, 177–192 (1951)

    Article  Google Scholar 

  38. Dobbs, H.A.C.: The present in physics. Br. J. Philos. Sci. 19, 317–324 (1969)

    Article  Google Scholar 

  39. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  40. Frankowska, H.: Lower semicontinuous solutions to Hamilton-Jacobi-Bellman equations. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton (1991)

    Google Scholar 

  41. Frankowska, H.: Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31, 257–272 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hopf, E.: Generalized solutions of nonlinear equations of first order. J. Math. Mech. 14, 961–973 (1965)

    MathSciNet  Google Scholar 

  43. Iannelli, M.: Mathematical Theory of Travel-Time-Structured Traffic Management. Giardini, Pisa (1995)

    Google Scholar 

  44. Keyfitz, B., Keyfitz, N.: The McKendrick partial differential equation and its uses in epidmiology and population study. Math. Comput. Model. 26, 1–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lax, P.: Hyperbolic systems of conservation laws. Commun. Pure Appl. Math. 10, 647–664 (1957)

    Google Scholar 

  46. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  47. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1997)

    Google Scholar 

  48. Von Foerster, H.: Some remarks on changing populations. In: The Kinetics of Cell Proliferation, pp. 382–407 (1959)

    Google Scholar 

  49. Webb, G.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcell Dekker, New York (1985)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Commission of the European Communities under the 7th Framework Programme Marie Curie Initial Training Network (FP7-PEOPLE-2010-ITN), project SADCO, contract number 264735, ANR-11-ASTRID-0041-04 and ANR-14-ASMA-0005-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Aubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aubin, JP., Chen, L. (2015). Generalized Lax-Hopf Formulas for Cournot Maps and Hamilton-Jacobi-McKendrick Equations. In: Bettiol, P., Cannarsa, P., Colombo, G., Motta, M., Rampazzo, F. (eds) Analysis and Geometry in Control Theory and its Applications. Springer INdAM Series, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-06917-3_1

Download citation

Publish with us

Policies and ethics