Skip to main content

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 18))

  • 1848 Accesses

Abstract

From a historical perspective, the theory of statistics was developed relatively recently. Calculating the mean from a number of measurements was a procedure first practiced in 1581 but even this simple method, which is understood by most people to-day, remained highly controversial until the end of the eighteenth century. Traditionally, the upper part of the Earth’s crust has been viewed as a complex three-dimensional mosaic of numerous rock units with different compositions and ages. However, as emphasized in this chapter, many geological features display random characteristics that can be modeled by adapting methods of mathematical statistics. The idea that random samples can be taken from statistical populations for the estimation of parameters remains paramount. The main parameters of geoscience data to be estimated are their mean and variance. Frequency distribution analysis is applicable to many different types of geological data. Discrete distributions include the binomial and Poisson, but also the geometric and negative binomial distributions. The normal and lognormal distributions are most important in modeling continuous data although the Pareto distribution is becoming increasingly important because of its close connection to fractal modeling. Many methods of statistical inference including Student’s t-test, analysis of variance and the chi-squared test for goodness of fit are based on the normal distribution. These statistical methods remain important in geology if used in an exploratory manner because the random variables considered often are not independent and identically distributed (iid), which is a requirement for statistical problem-solving as practiced in most other fields of science. Especially, numbers of degrees of freedom commonly used in statistical tests are strongly affected by spatial autocorrelation due to the continuous nature of most geological variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agterberg FP (1961) The skew frequency curve of some ore minerals. Geol Mijnb 40:149–162

    Google Scholar 

  • Agterberg FP (1974) Geomathematics. Elsevier, Amsterdam

    Google Scholar 

  • Agterberg FP (1990) Automated stratigraphic correlation. Elsevier, Amsterdam

    Google Scholar 

  • Agterberg FP (2012) Sampling and analysis of element concentration distribution in rock units and orebodies. Nonlinear Process Geophys 19:23–44

    Article  Google Scholar 

  • Agterberg FP (2013) At the interface between mathematical geoscience and classical statistics. In: Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, Moreno-Merino L, Durán JJ, Vargas-Guzmán JA (eds) Mathematics of planet earth. Springer, Heidelberg, pp 19–22

    Google Scholar 

  • Ahlfield F (1954) Los Yacimientos minerales de Bolivia. Imp Industrial, Bilbao

    Google Scholar 

  • Arroyo D, Emery X, Peláez M (2012) Sequential simulation with iterative methods. In: Abrahamsen P, Hauge R, Kolbjørnsen O (eds) Geostatistics Oslo 2012. Springer, Dordrecht, pp 3–14

    Chapter  Google Scholar 

  • Bickel PJ, Doksum K (2001) Mathematical statistics, vol 1, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Billingsley P (1986) Probability and measure, 2nd edn. Wiley, New York

    Google Scholar 

  • Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis. MIT Press, Cambridge, MA

    Google Scholar 

  • Bliss CI (1935) The calculation of the dosage mortality curve. Ann Appl Biol 22:134–167

    Article  Google Scholar 

  • Bloomfield P (2000) Fourier analysis of time series. Wiley, New York

    Book  Google Scholar 

  • Caers J (2011) Modeling uncertainty in the earth sciences. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Chayes F (1956) Petrographic modal analysis. Wiley, New York

    Google Scholar 

  • Chen Z, Cheng Q, Chen J, Xie S (2007) A novel iterative approach for mapping local singularities from geochemical data. Nonlinear Process Geophys 14:317–324

    Article  Google Scholar 

  • Cheng Q (2014) Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions. Nonlinear Process Geophys 21:472–482

    Google Scholar 

  • Clark I (1970) Practical geostatistics. Elsevier, Amsterdam

    Google Scholar 

  • Cramér H (1947) Mathematical methods of statistics. Princeton University Press, Princeton

    Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York

    Google Scholar 

  • De Wijs HJ (1951) Statistics of ore distribution. Geol Mijnb 30:365–375

    Google Scholar 

  • Dennison JM, Hay WW (1967) Estimating the needed sampling area for subaquatic ecologic studies. J Paleontol 41:706–708

    Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New York

    Google Scholar 

  • Doveton JH (2008) Application of Markov mean first-passage time statistics to sedimentary successions: a Pennsylvanian case-study from the Illinois Basin. In: Bonham-Carter G, Cheng Q (eds) Progress in geomathematics. Springer, Heidelberg, pp 411–419

    Google Scholar 

  • Dowd PA, Pardo-Igúzquiza E (2012) Estimation of the parametric inference of spatial covariances by maximum likelihood. In: Abrahamsen P, Hauge R, Kolbjørnsen O (eds) Geostatistics Oslo 2012. Springer, Dordrecht, pp 129–141

    Chapter  Google Scholar 

  • Dubois D, Prade H (2000) Possibility theory, probability theory and multiple-valued logics: a clarification. Ann Math Artif Intell 32:35–66

    Article  Google Scholar 

  • Eisenhart MA (1963) The background and evolution of the method of least squares. In: Proceedings of the 34th Session International Statistics Institute, Ottawa (preprint)

    Google Scholar 

  • Eubank RL (1988) Spline smoothing and nonparametric regression. Dekker, New York

    Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications. Wiley, New York

    Google Scholar 

  • Fisher RA (1960) The design of experiments. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Fisher Box J (1978) R.A. Fisher: the life of a scientist. Wiley, New York

    Google Scholar 

  • Gandin LS (1965) Objective analysis of meteorological fields. US Department of Commerce Clearinghouse, Springfield

    Google Scholar 

  • Gnedenko BV (1963) The theory of probability. Chelsea, New York

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gy P (2004) 50 Years of Pierre Gy’s “theory of sampling – a tribute”. Chemometr Intell Lab 74:61–70

    Article  Google Scholar 

  • Hacking I (2006) The emergence of probability, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hald A (1952) Statistical theory with engineering applications. Wiley, New York

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Jacobi J (ed) (1951) Paracelsus, selected writings. Guterman, London

    Google Scholar 

  • Kendall MG (1970) The beginnings of a probability calculus. In: Pearson ES, Kendall MG (eds) Studies in the history of statistics and probability. Hafner, Darien, pp 19–34

    Google Scholar 

  • Koch GS Jr, Link RF (1971) Statistical analysis of geological data. Wiley, New York

    Google Scholar 

  • Kolmogorov A (1931) Ueber die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math Ann 104:415–458

    Article  Google Scholar 

  • Krige DG (1951) A statistical approach to some basic valuation problems on the Witwatersrand. J S Afric Inst Mining Metallurgy 52:119–139

    Google Scholar 

  • Krige DG (1978) Lognormal-de Wijsian geostatistics for ore evaluation, South African Institute of Mining and Metallurgy monograph series 1. South African Institute of Mining and Metallurgy, Johannesburg

    Google Scholar 

  • Krige DG, Ueckermann HJ (1963) Value contours and improved regression techniques for ore reserve valuations. J S Afr Inst Min Metall 63:429–452

    Google Scholar 

  • Krumbein WC, Dacey MF (1969) Markov chains and embedded Markov chains in geology. J Int Assoc Math Geol 1:79–96

    Article  Google Scholar 

  • Krumbein WC, Graybill FA (1965) An introduction to statistical models in geology. McGraw-Hill, New York

    Google Scholar 

  • Lapin LI (1982) Statistics for modern business decisions, 3rd edn. Harcourt, Brace and Jovanovich, New York

    Google Scholar 

  • Lee YW (1960) Statistical theory of communication. Wiley, New York

    Google Scholar 

  • Lindley DV (1987) The probability approach to the treatment of uncertainty in artificial intelligence and expert systems. Stat Sci 2(1):17–24

    Article  Google Scholar 

  • Loève M (1963) Probability theory, 3rd edn. Van Nostrand, Princeton

    Google Scholar 

  • Lovejoy S, Schertzer D (2007) Scaling and multifractal fields in the solid earth and topography. Nonlinear Process Geophys 14:465–502

    Article  Google Scholar 

  • Matérn B (1981) Spatial variation, 2nd edn. Springer, Berlin

    Google Scholar 

  • Matheron G (1955) Application des methods statistiques à l’évaluation des gisements. Ann Min XII:50–74

    Google Scholar 

  • Matheron G (1962) Traité de géostatistique appliquée, Mém BRGM 14. Éditions Technip, Paris

    Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation. Masson, Paris

    Google Scholar 

  • Matheron G (1967) Kriging or polynomial interpolation procedures? Trans Can Inst Min Metall 70:240–242

    Google Scholar 

  • Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer, Norell

    Book  Google Scholar 

  • Ondrick CW, Griffiths JC (1969) FORTRAN IV computer program for fitting observed count data to discrete distribution models of binomial, Poisson and negative binomial. Kansas Geological Survey Computer Contributions 35

    Google Scholar 

  • Peredo O, Ortiz M (2012) Multiple-point geostatistical simulation based on genetic algorithms implemented in a shared-memory supercomputer. In: Abrahamsen P, Hauge R, Kolbjørnsen O (eds) Geostatistics Oslo 2012. Springer, Dordrecht, pp 103–114

    Chapter  Google Scholar 

  • Pinto-Vásquez J (1993) Volcanic dome associated precious and base metal epithermal mineralization at Pulacayo, Bolivia. Econ Geol 88:697–700

    Article  Google Scholar 

  • Plackett RI (1970) The principle of the arithmetic mean. In: Pearson ES, Kendall MG (eds) Studies in the history of statistics and probability. Hafner, Darien, pp 121–126

    Google Scholar 

  • Scherer W (1968) Applications of Markov chains to cyclical sedimentation in the Oficina Formation, eastern Venezuela. Unpublished thesis, Northwestern University, Evanston

    Google Scholar 

  • Schuenemeyer J, Drew L (2011) Statistics for earth and environmental scientists. Wiley, New York

    Google Scholar 

  • Simpson T (1755) On the advantage of taking the mean of a number of observations in practical astronomy. Philos Trans R Soc Lond 46:82 (also in vol 10, 1809 ed. Baldwin, London, p 579)

    Google Scholar 

  • Stigler SM (2008) Karl Pearson’s theoretical errors and the advances they inspired. Stat Sci 23:261–271

    Article  Google Scholar 

  • Tukey JW (1962) The future of data analysis. Ann Math Soc 33:1–67

    Article  Google Scholar 

  • Turneaure FS (1971) The Bolivian tin-silver province. Econ Geol 66:215–255

    Article  Google Scholar 

  • Uhler RS, Bradley PG (1970) A stochastic model for petroleum exploration over large regions. J Am Stat Assoc 65:623–630

    Article  Google Scholar 

  • Villaipando B, Ueno H (1987) El yacimiento argentifero de Pulacayo, Bolivia. Mem Col Inst Geol Econ. University Mayor San Andres, La Paz, pp 203–235

    Google Scholar 

  • Vistelius AB (1960) The skew frequency distribution and the fundamental law of the geochemical processes. J Geol 68:1–22

    Article  Google Scholar 

  • Webster R (2001) Geostatistics for environmental scientists. Wiley, New York

    Google Scholar 

  • Wilks SS (1962) Mathematical statistics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agterberg, F. (2014). Probability and Statistics. In: Geomathematics: Theoretical Foundations, Applications and Future Developments. Quantitative Geology and Geostatistics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-06874-9_2

Download citation

Publish with us

Policies and ethics