Skip to main content

Introduction

  • Chapter
  • First Online:
Iris Image Recognition

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 1190 Accesses

Abstract

The brief introduction to biometrics in general and iris in particular is given in Chap. 1. This chapter presents a brief review on iris recognition algorithms, one-dimensional filter-banks, and two-dimensional filter-banks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain A, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  2. Clarke R (1994) Human identification in information systems: management challenges and public policy issues. Inf Technol People 7(4):6–37

    Article  Google Scholar 

  3. Jain A, Bolle R, Pankanti S (1999) Personal identification in networked society. Kluwer Academic Publisher, Boston

    Google Scholar 

  4. Maltoni D, Maio D, Jain A, Prabhakar S (2005) Handbook of fingerprint recognition. Springer, New York

    Google Scholar 

  5. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 25(11):1148–1161

    Article  Google Scholar 

  6. Daugman JG (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(1):21–30

    Google Scholar 

  7. Daugman JG (2003) The imporance of being random: statistical principles of iris recognition. Pattern Recogn 36(2):279–291

    Google Scholar 

  8. Roy K (2011) Recognition of non-ideal iris images using shape guided approach and game theory. Ph.D. dissertation, Department of Computer Science and Software Engineering, Concordia University, Canada

    Google Scholar 

  9. Proenca H (2006) Towards non-cooperative biometric iris recognition. Ph.D. dissertation, Department of Computer Science, University of Beira Interior, Portugal

    Google Scholar 

  10. Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9): 1348–1363

    Google Scholar 

  11. Boles WW (1998) A human identification technique using images of the iris and wavelet transform. IEEE Trans Sig Process 46(4):1185–1188

    Article  Google Scholar 

  12. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–694

    Article  MATH  Google Scholar 

  13. Sanchez-Avila C, Sanchez-Reillo R, de Martin-Roche D (2001) Iris recognition for biometric identification using dyadic wavelet transform zero-crossing. In: Proceedings of the 35th IEEE international Carnahan conference on security technology, pp 272–277

    Google Scholar 

  14. Masek L (2003) Recognition of human iris patterns for biometric identification. Master’s thesis, Department of Computer Science and Software Engineering, The University of Western Australia

    Google Scholar 

  15. Ma L, Tan T, Wang Y, Zhang D (2004) Personal identification based on iris texture analysis. IEEE Trans Pattern Anal Mach Intell 25(12):2519–2533

    Google Scholar 

  16. Ma L, Wang Y, Zhang D (2004) Efficient iris recognition by characterizing key local variations. IEEE Trans Image Process 13(6):739–750

    Google Scholar 

  17. Ma L, Tan T, Zhang D, Wang Y (2004) Local intensity variation analysis for iris recognition. Pattern Recogn 37(6):1287–1298

    Google Scholar 

  18. Ma L, Wang Y, Tan T (2002) Iris recognition based on multichannel gabor filtering. In: Proceedings of Asian conference on computer vision. Melbourne, Australia, pp 279–283

    Google Scholar 

  19. Ma L, Wang Y, Tan T (2002) Iris recognition using circular symmetric filters. In: Proceedings of the 25th international conference on pattern recognition (ICPR02), pp 414–417

    Google Scholar 

  20. Sun Z, Wang Y, Tan T, Cui J (2005) Improving iris recognition accuracy via cascaded classifiers. IEEE Trans Syst Man Cybern B Cybern 35(3):435–441

    Google Scholar 

  21. Sun Z, Tan T (2009) Ordinal measures for iris recognition. IEEE Trans Pattern Anal Mach Intell 31(12):2211–2226

    Google Scholar 

  22. Dong W, Tan T, Sun Z (2010) Iris matching based on personalized weight map. IEEE Trans Pattern Anal Mach Intell 99(1):1–14

    Google Scholar 

  23. He Z, Sun Z, Tan T, Qiu X, Zhang C (2008) Boosting ordinal features for accurate and fast iris recognition. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8

    Google Scholar 

  24. Vatsa M, Singh R, Noore A (August 2008) Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans Syst Man Cybern B 38(4):1021–1035

    Google Scholar 

  25. Schuckers S, Schmid N, Abhyankar A, Dorairaj V, Boyce C, Hornak L (2007) On techniques for off angle compnesation in nonideal iris recognition. IEEE Trans Syst Man Cybern B Cybern 37(5):1176–1190

    Google Scholar 

  26. Abhyankar A, Schuckers S (2007) A novel biorthogonal wavelet network system for off-angle iris recognition. Pattern Recogn 43:586–594

    Google Scholar 

  27. Velisavljević V (2009) Low-complexity iris coding and recognition based on directionlets. IEEE Trans Inf Forensics Secur 4(3):410–417

    Article  Google Scholar 

  28. Velisavljević V, Beferull-Lozano B, Vetterli M, Dragotti P (2006) Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Trans Image Process 15(7):1916–1933

    Article  Google Scholar 

  29. Monro DM, Rakshit S (2007) DCT based iris recognition. IEEE Trans Pattern Anal Mach Intell 29(4):586–595

    Article  Google Scholar 

  30. Proença H, Alexandre LA (2007) Toward non-cooperative iris recognition: a classification approach using multiple signatures. IEEE Trans Pattern Anal Mach Intell 29(4):607–612

    Article  Google Scholar 

  31. Huang J, You X, Yuan Y, Yang F, Lin L (2010) Rotation invariant iris feature extraction using guassian markov random fileds with non-seprable wavelet. Neurocomputing 73:883–894

    Article  Google Scholar 

  32. Park C, Lee J, Oh S, Song Y (2003) Iris feature extraction and matching based on maltiscale and directional image representation. In: Proceedings of fourth international conference on scale space methods in computer vision. Springer, Isle of Skye, UK, pp 576–583

    Google Scholar 

  33. Bamberger R, Smith M (1992) A filter bank for the directional decomposition of images: theory and design. IEEE Trans Signal Process 40:882–893

    Article  Google Scholar 

  34. Nabti M, Ghouti L, Bouridane A (2008) An effective and fast iris recognition system based on a combined multiscale feature extraction technique. Pattern Recogn 41:868–879

    Article  MATH  Google Scholar 

  35. Thornton J, Savvides M (2007) A bayesian approach to deformed pattern matching of iris images. IEEE Trans Pattern Anal Mach Intell 29(4):596–606

    Google Scholar 

  36. Tisse C, Martin L, Torres L, Robert M (2002) Person identification technique using human iris recognition. In: Proceedings of the 25th international conference on vision interface, pp. 294–299

    Google Scholar 

  37. Lim S, Lee K, Byeon O, Kim T (2001) Efficient iris recognition through improvement of feture vector and classifier. ETRI 23(2):61–70

    Article  Google Scholar 

  38. Helen S, Selvan S (2006) Iris feature extraction based on directional image representation. GVIP J 8(4):55–62

    Google Scholar 

  39. Altan A (2008) Recognition of selected fingerprints and iris features enhanced by curvelet transform with artificial neural network. In: Proceedings of 15th international conference on systems, signals, and image processing, pp. 421–424

    Google Scholar 

  40. Chen Y, Dass S, Jain A (2006) Localized iris image quality using 2-D wavelets. In: Proceedings of international conference on biometrics, pp 373–381

    Google Scholar 

  41. Du Y, Ives R, Etter D, Welch T (2006) Use of one-dimensional iris signatures to rank iris pattern similarities. Opt Eng 45(3):037 201-1-037 201–11

    Google Scholar 

  42. Wang F, Yao X, Han J (2007) Minimax probability machine multialgorithmic fusion for iris recognition. Inf Technol J 6(7):1043–1049

    Article  Google Scholar 

  43. Ariyapreechakul P (2007) An improvement of iris pattern identification using radon transform. ECTI Trans Comput Inf Technol 3(1):45–50

    Google Scholar 

  44. Sung H, Lim J, Park J, Lee Y (2004) Iris recognition using collarette boundary localization. In: Proceedings of international conference on pattern recognition

    Google Scholar 

  45. Kumar A, Passi A (2010) Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn 43(3):1016–1026

    Article  MATH  Google Scholar 

  46. Poursaberi A, Araabi B (2007) Iris recognition for partially occluded images: methodology and sensitivity analysis. EURASIP J Adv Sig Process 2007:1–12

    Google Scholar 

  47. Dey S, Samanta D (2010) Improved feature processing for iris biometric authentication system. World Acad Sci Eng Res 4:486–493

    Google Scholar 

  48. Bodade R, Talbar S (2009) Iris recognition using combination of dual tree rotated complex wavelet and dual tree complex wavelet. In: Proceedings of the IEEE international conference on communications, pp 5425–5429

    Google Scholar 

  49. Bae K, Noh S, Kim J (2003) Iris feature extraction using independent component analysis. In: Proceedings of international conference on audio and video based biometric person authentication, pp 838–844

    Google Scholar 

  50. Dorairaj V, Schmid N, Fahmy G (2005) Performance evaluation of iris based recognition system implementing global ICA encoding. In: Proceedings of international conference on image processing, vol. 3, pp 285–288

    Google Scholar 

  51. Krichen E, Garcia-Salicetti S, Dorizzi B (2009) A new phase-correlation-based iris matching for degraded images. IEEE Trans Syst Man Cybern B Cybern 39(4):924–934

    Article  Google Scholar 

  52. Chou C, Shih S, Chen W, Cheng V, Chen D (March 2010) Non-orthgonal view iris recognition system. IEEE Trans Circuits Syst Video Technol 20(3):417–430

    Google Scholar 

  53. Bowyer K, Hollingsworth K, Flynn P (2008) Image understanding for iris biometrics: a survey. Comput Vis Image Underst 110(2):281–307

    Article  Google Scholar 

  54. Brune O (1931) Synthesis of a finite two terminal network whose driving point impedence is a prescribed function of frequency. J Math Phys 10:191–235

    MATH  Google Scholar 

  55. Swamy M, Rajan P (1986) Symmetry in two-dimensional filters and its application. Mercel Dekker Inc., New York

    Google Scholar 

  56. Croisier A, Esteban D, Galand C (1976) Perfect channel splitting by use of interpolation, decimation, tree decomposition techniques. In: Proceedings of IEEE conference on information systems, pp 443–446

    Google Scholar 

  57. Crochiere R, Rabiner L (1983) Multirute digital signal processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  58. Vetterli M (1984) Multidimensional subband coding: some theory and algorithms. Signal Process 6:97–112

    Article  MathSciNet  Google Scholar 

  59. Ramstad T (1984) Analysis/synthesis filter banks with critical sampling. In: IEEE conference on digital signal processing. Florence, pp 130–134

    Google Scholar 

  60. Smith M, Barnwell T (1985) A unifying framework for analysis synthesis systems based on maximally decimated filter banks. In: Proceedings of IEEE conference on IEEE ICASSP, vol 10, pp 521–524

    Google Scholar 

  61. Smith M, Barnwell T (1987) A new filter bank theory for time frequency representation. IEEE Trans Acoust Speech Signal Process 35(3):314–327

    Article  Google Scholar 

  62. Vetterli M (1985) Splitting a signal into subsampled channels allowing perfect reconstruction. In: Proceedings of the SPIE conference on signal processing digital filtering, Paris

    Google Scholar 

  63. Nayebi K, Barnwell T, Smith M (1992) Time-domain filter-bank analysis: a new design theory. IEEE Trans Signal Process 40:1412–1429

    Article  MATH  Google Scholar 

  64. Vaidyanathan PP (1987) Quadrature mirror filter-banks, m-band extensions, and perfect-reconstruction techniques. IEEE ASSP Mag 4:4–20

    Article  Google Scholar 

  65. Vetterli M, Kovacevic J (1995) Wavelets and subband coding. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  66. Nguyen T, Vaidyanathan P (1989) Two channel pr FIR QMF structures which yield linear phase analysis and synthesis filters. IEEE Trans Acoust Speech Signal Process 37:676–690

    Article  Google Scholar 

  67. Patil B, Patwardhan P, Gadre V (2008) On the design of fir wavelet filter banks using factorization of a halfband polynomial. IEEE Signal Process Lett 15:485–488

    Article  Google Scholar 

  68. Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  69. Daubechies I, Feauveau J (1992) Biorthogonal bases of compactly supported wavelets. Commun Pure Appl Math 45:485–560

    Google Scholar 

  70. Ansari R (1991) Wavelet construction using lagrange halfband filters. IEEE Trans Circuits Syst Express Briefs 38:1116–1118

    Article  Google Scholar 

  71. Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelet. J Appl Comput Harmon Anal 3(2):186–200

    Article  MATH  MathSciNet  Google Scholar 

  72. Daubechies I, Sweldens W (1996) Factoring wavelet transforms into lifting steps. J Fourier Anal Appl 4:1–24

    MathSciNet  Google Scholar 

  73. Phoong S, Kim C, Vaidyanathan P, Ansari R (1995) A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans Signal Process 43(3):649–665

    Article  Google Scholar 

  74. Ansari R, Kim C, Dedovic M (1999) Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE Trans Circuits Syst II Analog Digit Signal Process 46(12):1487–1496

    Article  Google Scholar 

  75. Tay DBH, Palaniswami M (2004) A novel approach to the design of the class of triplet halfband filterbanks. IEEE Trans Circuits Syst Syst II Express Briefs 51(7):378–383

    Article  Google Scholar 

  76. Tay DBH (2008) ETHFB: a new class of even-length biorthogonal wavelet filters for hilbert pair design. IEEE Trans Circuits Syst Syst I Regul Pap 55(6):1580–1588

    Article  MathSciNet  Google Scholar 

  77. Chan S, Yeung K (2004) On the design and multiplierless realizaton of perfect reconstruction triplet-based fir filterbanks and wavelet bases. IEEE Trans Circuits Syst Syst I 51(8): 1476–1491

    Google Scholar 

  78. Kha H, Tuan H, Nguyen T (2011) Optimal design of fir triplet halfband filter bank and application in image coding. IEEE Trans Image Process 22(2):586–591

    Article  MathSciNet  Google Scholar 

  79. Eslami R, Radha H (2010) Design of regular wavelets using a three-step lifting scheme. IEEE Trans Signal Process 58(4):2088–2101

    Article  MathSciNet  Google Scholar 

  80. Kovacevic J, Sweldens W (2000) Wavelet families of increasing order in arbitrary dimensions. IEEE Trans Image Process 9(3):480–496

    Article  MATH  Google Scholar 

  81. Nguyen T (1995) Digital filter banks design: quadratic constrained formulation. IEEE Trans Signal Process 43:2103–2108

    Article  Google Scholar 

  82. Viscito E, Allebach J (1991) The analysis and design of multi-dimensional fir perfect reconstruction filter-banks for arbitrary sampling lattices. IEEE Trans Circuits Syst 38:29–41

    Article  Google Scholar 

  83. Vaidyanathan PP (1993) Multirate systems and filter banks. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  84. Soman A, Vaidyanathan P (1993) Linear phase paraunitary filter banks: theory, factorizations and designs. IEEE Trans Signal Process 41(12):3480–3496

    Article  MATH  Google Scholar 

  85. Karlsson G, Vetterli M (1990) Theory of two-dimensional multirate filter banks. IEEE Trans Acoust Speech Signal Process 38(6):925–937

    Article  Google Scholar 

  86. Kovacevic J, Vetterli M (1995) Nonseparable two and three dimensional wavelets. IEEE Trans Signal Process 43(52):1269–1272

    Article  Google Scholar 

  87. Hong P, Smith T (2002) An octave band family of non-redundant directional filter banks. In: Proceedings of international conference on acoustics, Speech and signal processing, vol 2, pp 1165–1168

    Google Scholar 

  88. Nguyen T, Oraintara S (2005) Multiresolution direction filterbanks: theory, design and applications. IEEE Trans Signal Process 53(10):3895–3905

    Article  MathSciNet  Google Scholar 

  89. Kalker T, Shah I (1996) A group theoretic approach to multidimensional filter banks: theory and applications. IEEE Trans Signal Process 44(6):1392–1405

    Article  Google Scholar 

  90. Horn R, Johnson C (1999) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  91. Zhou J, Do MN, Kovacevic J (2006) Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks. IEEE Trans Image Process 15(2):511–519

    Article  MathSciNet  Google Scholar 

  92. Zhou J, Do MN, Kovacevic J (2005) Multidimensional orthogonal filter-bank characterization and design using the cayley transform. IEEE Trans Image Process 14(6):760–769

    Article  Google Scholar 

  93. Lin Y, Vaidyanathan P (1996) Theory and design of two-parallelogram filter banks. IEEE Trans Signal Process 44(11):2688–2705

    Article  Google Scholar 

  94. Ikehara M (1995) Modulated two-dimensional perfect reconstruction FIR filter banks with permissible passbands. In: Proceedings of international conference on acoustics, speech, and signal processing, pp 1468–1471

    Google Scholar 

  95. Shah I, Kalker T (1993) Theory and design of multidimensional QMF sub-band filters from 1D filters and polynomials using transforms. IEE Proc Commun Speech Vision 140(1):67–71

    Article  Google Scholar 

  96. Tay DBH, Kingsbury N (1993) Flexible design of multidimensional perfect reconstruction FIR 2-band filter-banks using transformation of variables. IEEE Trans Image Process 2:466–480

    Article  Google Scholar 

  97. Mersereau R, Mecklenbrauker W, Quatieri T (1976) Mcclellan transformation for 2d filtering: i-design. IEEE Trans Circuits Syst 23(7):405–414

    Article  MATH  MathSciNet  Google Scholar 

  98. Eslami R (2007) A new family of nonredundant transforms using hybrid wavelets and directional filter banks. IEEE Trans Image Process 16(4):1152–1167

    Article  MathSciNet  Google Scholar 

  99. Lu Y, Do M (2005) The finer directional wavelet transform. In: Proceedings of the IEEE ICASSP, Philadelphia

    Google Scholar 

  100. Do M, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  MathSciNet  Google Scholar 

  101. Candes E, Demanet L, Donoho D (2005) Fast discrete curvelet transform. Technical report, CalTech

    Google Scholar 

  102. Kingsbury N (2002) Complex wavelets for shift invariant analysis and filtering of signals. J Appl Comput Harmon Anal 10(3):234–253

    Google Scholar 

  103. Kokare M, Biswas P, Chatterji B (2005) Texture image retrieval using new rotated complex wavelet fitlers. IEEE Trans Syst Man Cybern B Cybern 35(6):1168–1178

    Article  Google Scholar 

  104. Donoho DL (1999) Wedgelets: nearly minimax estimation of edges. Ann Stat 27(3):859–897

    Article  MATH  MathSciNet  Google Scholar 

  105. Candes E, Donoho DL (1999) Ridgelets: a key to higher dimensional intermittency? Philos Trans R Soc Lond 357:2495–2509

    Article  MATH  MathSciNet  Google Scholar 

  106. Pennec E, Mallat S (2005) Sparse geometric image representation with bandelets. IEEE Trans Image Process 14(4):423–438

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol D. Rahulkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Rahulkar, A.D., Holambe, R.S. (2014). Introduction. In: Iris Image Recognition. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-06767-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06767-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06766-7

  • Online ISBN: 978-3-319-06767-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics