Skip to main content

Pseudomonas and Azospirillum

  • Chapter
Handbook for Azospirillum

Abstract

Pseudomonas strains are fast growing, genetically diverse and metabolically versatile bacteria. Many pseudomonad species are preferential inhabitants of the rhizosphere of plants, reaching up to 108 CFU/g of roots for crop species like soybean or maize in the field. Rhizospheric pseudomonads contribute to plant growth and health through a variety of plant probiotic mechanisms, including protection of roots against fungal pathogen attack. Due to their relative ease to isolate and cultivate in the lab, there is an enormous wealth of knowledge about physiological, biochemical, and genetic traits of pseudomonads. Based on their PGPR traits, several inoculant products are commercialized, either for seed, foliar, or post-harvest treatment of crops, vegetables, and fruits. Provided that pseudomonads share the rhizosphere niche with Azospirillum species, as well as with many other PGPR microorganisms, combined formulations have also become available for agronomic purposes. However, little information about interspecies and multispecies interactions is available. This chapter describes microbiological, genetic, and agronomic tools that may be applied to isolate and characterize novel Pseudomonas spp. from diverse source materials, to study their interaction with Azospirillum cells in the context of dual or multispecies inoculants, and to evaluate the quality and effectiveness of formulated products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agaras B, Wall LG, Valverde C (2012) Specific enumeration and analysis of the community structure of culturable pseudomonads in agricultural soils under no-till management in Argentina. Appl Soil Ecol 61:305–319

    Article  Google Scholar 

  • Agaras B, Wall LG, Valverde C (2014) Influence of agricultural practices and seasons on the abundance and community structure of culturable pseudomonads in soils under no-till management in Argentina. Plant Soil 382:117–131

    Article  CAS  Google Scholar 

  • Albanesi AS, Benintende S, Cassán F, Perticari A (2013) Manual de procedimientos microbiológicos para la evaluación de inoculantes, 1 edn. Asociación Argentina de Microbiología, Buenos Aires

    Google Scholar 

  • Bashan Y (1986) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51(5):1089–1098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262–266

    Article  CAS  Google Scholar 

  • Bergmark L, Poulsen PH, Al-Soud WA, Norman A, Hansen LH, Sorensen SJ (2012) Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiol Lett 333(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13(11):1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Bodilis J, Hedde M, Orange N, Barray S (2006) OprF polymorphism as a marker of ecological niche in Pseudomonas. Environ Microbiol 8(9):1544–1551

    Article  CAS  PubMed  Google Scholar 

  • Brown VI, Lowbury EJ (1965) Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. J Clin Pathol 18(6):752–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabrefiga J, Frances J, Montesinos E, Bonaterra A (2014) Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. J Appl Microbiol 117(4):1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86(6):1637–1645

    Article  CAS  PubMed  Google Scholar 

  • Costa R, Gomes NC, Krogerrecklenfort E, Opelt K, Berg G, Smalla K (2007) Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol 9(9):2260–2273

    Article  CAS  PubMed  Google Scholar 

  • Couillerot O, Ramirez-Trujillo A, Walker V, von Felten A, Jansa J, Maurhofer M, Defago G, Prigent-Combaret C, Comte G, Caballero-Mellado J, Moenne-Loccoz Y (2013) Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97(10):4639–4649

    Article  CAS  PubMed  Google Scholar 

  • Deaker R, Kecskés ML, Rose MT, Khanok-on A, Krishnen G, Cuc TTK, Nga VT, Cong PT, Hien NT, Kennedy IR (2011) Practical methods for the quality control of inoculant biofertilizers. ACIAR, Canberra

    Google Scholar 

  • DeCoste NJ, Gadkar VJ, Filion M (2011) Relative and absolute quantitative real-time PCR-based quantifications of hcnC and phlD gene transcripts in natural soil spiked with Pseudomonas sp. strain LBUM300. Appl Environ Microbiol 77(1):41–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faggioli VS, Cazorla CR, Vigna A, Berti MF (2007) Fertilizantes biológicos en maíz. Ensayo de inoculación con cepas de Azospirillum brasilense y Pseudomonas fluorescens. http://www.intagovar/mjuarez/info/documentos/suelos/fertbio07reshtm

  • Frapolli M, Moenne-Loccoz Y, Meyer J, Defago G (2008) A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. FEMS Microbiol Ecol 64(3):468–481

    Article  CAS  PubMed  Google Scholar 

  • Gould WD, Hagedorn C, Bardinelli TR, Zablotowicz RM (1985) New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl Environ Microbiol 49(1):28–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holt JG (1994) Bergey’s manual of determinative bacteriology, vol 787, 9th edn. Lippincot Williams & Wilkins, Baltimore

    Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72(11):7083–7090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44(2):301–307

    CAS  PubMed  Google Scholar 

  • Lambertsen L, Sternberg C, Molin S (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6(7):726–732

    Article  CAS  PubMed  Google Scholar 

  • Li L, Abu Al-Soud W, Bergmark L, Riber L, Hansen LH, Magid J, Sorensen SJ (2013) Investigating the diversity of pseudomonas spp. in soil using culture dependent and independent techniques. Curr Microbiol 67(4):423–430

    Article  CAS  PubMed  Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61(3):606–618

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Marques JM, da Silva TF, Vollu RE, Blank AF, Ding GC, Seldin L, Smalla K (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88(2):424–435

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Meyer JB, Lutz MP, Frapolli M, Pechy-Tarr M, Rochat L, Keel C, Defago G, Maurhofer M (2010) Interplay between wheat cultivars, biocontrol pseudomonads, and soil. Appl Environ Microbiol 76(18):6196–6204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pliego C, de Weert S, Lamers G, de Vicente A, Bloemberg G, Cazorla FM, Ramos C (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Environ Microbiol 10(12):3295–3304

    Article  PubMed  Google Scholar 

  • Power B, Liu X, Germaine KJ, Ryan D, Brazil D, Dowling DN (2011) Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113. J Appl Microbiol 110(5):1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Puente ML, García JE (2009) Revisión del uso de Azospirillum brasilense como promotor del crecimiento en trigo y maíz en Argentina. In: Puente ML, García JE, Perticari A (eds) Uso actual y potencial de microorganismos para mejorar la nutrición y el desarrollo en trigo y maíz, 1st edn. INTA, Buenos Aires, pp 8–21

    Google Scholar 

  • Ramos JL, Filloux A (2007) Pseudomonas. A model system in biology, vol 5, 1 edn. Springer, New York

    Google Scholar 

  • Rodriguez Caceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44(4):990–991

    Google Scholar 

  • Sanchez-Contreras M, Martin M, Villacieros M, O’Gara F, Bonilla I, Rivilla R (2002) Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184(6):1587–1596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiter S, Ding GC, Heuer H, Neumann G, Sandmann M, Grosch R, Kropf S, Smalla K (2014) Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:144

    Article  PubMed Central  PubMed  Google Scholar 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130

    Article  PubMed Central  PubMed  Google Scholar 

  • Valverde C, Ferraris G (2009) Las pseudomonas: Un grupo heterogéneo con diversos mecanismos promotores del desarrollo vegetal. In: Puente ML, García JE, Perticari A (eds) Uso actual y potencial de microorganismos para mejorar la nutrición y el desarrollo en trigo y maíz, 1st edn. INTA, Buenos Aires, pp 22–43

    Google Scholar 

  • Valverde C, Haas D (2008) Small RNAs controlled by two-component systems. Adv Exp Med Biol 631:54–79

    Article  CAS  PubMed  Google Scholar 

  • van den Broek D, Bloemberg GV, Lugtenberg B (2005) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7(11):1686–1697

    Article  PubMed  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Article  Google Scholar 

  • Von Felten A, Defago G, Maurhofer M (2010) Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J Microbiol Methods 81(2):108–115

    Article  Google Scholar 

  • Xiang SR, Cook M, Saucier S, Gillespie P, Socha R, Scroggins R, Beaudette LA (2010) Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms. Appl Environ Microbiol 76(21):7126–7135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Valverde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valverde, C., Gonzalez Anta, G., Ferraris, G. (2015). Pseudomonas and Azospirillum . In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_21

Download citation

Publish with us

Policies and ethics