Skip to main content

Image Processing in Intravascular OCT

  • Reference work entry
Optical Coherence Tomography

Abstract

Coronary artery disease is the leading cause of death in the world. Intravascular optical coherence tomography (IVOCT) is rapidly becoming a promising imaging modality for characterization of atherosclerotic plaques and evaluation of coronary stenting. OCT has several unique advantages over alternative technologies, such as intravascular ultrasound (IVUS), due to its better resolution and contrast. For example, OCT is currently the only imaging modality that can measure the thickness of the fibrous cap of an atherosclerotic plaque in vivo. OCT also has the ability to accurately assess the coverage of individual stent struts by neointimal tissue over time. However, it is extremely time-consuming to analyze IVOCT images manually to derive quantitative diagnostic metrics. In this chapter, we introduce some computer-aided methods to automate the common IVOCT image analysis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.L. Roger, A.S. Go, D.M. Lloyd-Jones, R.J. Adams, J.D. Berry, T.M. Brown, M.R. Carnethon, S. Dai, G. de Simone, E.S. Ford, C.S. Fox, H.J. Fullerton, C. Gillespie, K.J. Greenlund, S.M. Hailpern, J.A. Heit, P.M. Ho, V.J. Howard, B.M. Kissela, S.J. Kittner, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, D.M. Makuc, G.M. Marcus, A. Marelli, D.B. Matchar, M.M. McDermott, J.B. Meigs, C.S. Moy, D. Mozaffarian, M.E. Mussolino, G. Nichol, N.P. Paynter, W.D. Rosamond, P.D. Sorlie, R.S. Stafford, T.N. Turan, M.B. Turner, N.D. Wong, J. Wylie-Rosett, Heart disease and stroke statistics – 2011 update. Circulation 123(4), e18–e209 (2011)

    Article  Google Scholar 

  2. H.G. Bezerra, M.A. Costa, G. Guagliumi, A.M. Rollins, D.I. Simon, Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications. JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009)

    Article  Google Scholar 

  3. I.-K. Jang, B.E. Bouma, D.-H. Kang, S.-J. Park, S.-W. Park, K.-B. Seung, K.-B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S.L. Houser, H.T. Aretz, G.J. Tearney, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 39(4), 604–609 (2002)

    Article  Google Scholar 

  4. H. Yabushita, B.E. Bouma, S.L. Houser, H.T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, D.H. Kang, E.F. Halpern, G.J. Tearney, Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13), 1640–1645 (2002)

    Article  Google Scholar 

  5. B.E. Bouma, G.J. Tearney, H. Yabushita, M. Shishkov, C.R. Kauffman, D. DeJoseph Gauthier, B.D. MacNeill, S.L. Houser, H.T. Aretz, E.F. Halpern, I.-K. Jang, Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89(3), 317–320 (2003)

    Article  Google Scholar 

  6. T. Kubo, T. Imanishi, S. Takarada, A. Kuroi, S. Ueno, T. Yamano, T. Tanimoto, Y. Matsuo, T. Masho, H. Kitabata, K. Tsuda, Y. Tomobuchi, T. Akasaka, Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50(10), 933–939 (2007)

    Article  Google Scholar 

  7. Y. Suzuki, F. Ikeno, T. Koizumi, F. Tio, A.C. Yeung, P.G. Yock, P.J. Fitzgerald, W.F. Fearon, In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of in-stent neointima after stent implantation. J. Am. Coll. Cardiol. Intv. 1(2), 168–173 (2008)

    Article  Google Scholar 

  8. M. Nakano, M. Vorpahl, F. Otsuka, M. Taniwaki, S.K. Yazdani, A.V. Finn, E.R. Ladich, F.D. Kolodgie, R. Virmani, Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging. J. Am. Coll. Cardiol. Img. 5(1), 71–82 (2012)

    Article  Google Scholar 

  9. L. Wexler, B. Brundage, J. Crouse, R. Detrano, V. Fuster, J. Maddahi, J. Rumberger, W. Stanford, R. White, K. Taubert, Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications: a statement for health professionals from the American Heart Association. Circulation 94(5), 1175–1192 (1996)

    Article  Google Scholar 

  10. I. Moussa, C. Di Mario, J. Moses, B. Reimers, L. Di Francesco, G. Martini, J. Tobis, A. Colombo, Coronary stenting after rotational atherectomy in calcified and complex lesions: angiographic and clinical follow-up results. Circulation 96(1), 128–136 (1997)

    Article  Google Scholar 

  11. E. Falk, Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J. 50(2), 127–134 (1983)

    Article  Google Scholar 

  12. G.J. Tearney, E. Regar, T. Akasaka, T. Adriaenssens, P. Barlis, H.G. Bezerra, B. Bouma, N. Bruining, J.-M. Cho, S. Chowdhary, M.A. Costa, R. de Silva, J. Dijkstra, C. Di Mario, D. Dudeck, E. Falk, M.D. Feldman, P. Fitzgerald, H. Garcia, N. Gonzalo, J.F. Granada, G. Guagliumi, N.R. Holm, Y. Honda, F. Ikeno, M. Kawasaki, J. Kochman, L. Koltowski, T. Kubo, T. Kume, H. Kyono, C.C.S. Lam, G. Lamouche, D.P. Lee, M.B. Leon, A. Maehara, O. Manfrini, G.S. Mintz, K. Mizuno, M.-A. Morel, S. Nadkarni, H. Okura, H. Otake, A. Pietrasik, F. Prati, L. Raber, M.D. Radu, J. Rieber, M. Riga, A. Rollins, M. Rosenberg, V. Sirbu, P.W.J.C. Serruys, K. Shimada, T. Shinke, J. Shite, E. Siegel, S. Sonada, M. Suter, S. Takarada, A. Tanaka, M. Terashima, T. Troels, S. Uemura, G.J. Ughi, H.M.M. van Beusekom, A.F.W. van der Steen, G.-A. van Es, G. van Soest, R. Virmani, S. Waxman, N.J. Weissman, G. Weisz, Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J. Am. Coll. Cardiol. 59(12), 1058–1072 (2012)

    Article  Google Scholar 

  13. K. Sihan, C. Botha, F. Post, S. de Winter, N. Gonzalo, E. Regar, P.J.W.C. Serruys, R. Hamers, N. Bruining, Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography. Catheter. Cardiovasc. Interv. 74(7), 1058–1065 (2009)

    Article  Google Scholar 

  14. S. Gurmeric, G.G. Isguder, Carlier, G. Unal, A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks. Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 776–785 (2009)

    Google Scholar 

  15. G. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, J. D’hooge, Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage. Int. J. Cardiovasc. Imaging 28(2), 229–241 (2012)

    Google Scholar 

  16. S. Tsantis, G.C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, G.C. Nikiforidis, Automatic vessel lumen segmentation and stent strut detection in intravascular OCT. Med. Phys. 39(1), 503–513 (2012)

    Article  Google Scholar 

  17. Z. Wang, D. Chamie, H.G. Bezerra, H. Yamamoto, J. Kanovsky, D.L. Wilson, M.A. Costa, A.M. Rollins, Volumetric quantification of fibrous caps using intravascular optical coherence tomography. Biomed. Opt. Express 3(6), 1413–1426 (2012)

    Article  Google Scholar 

  18. Z. Wang, H. Kyono, H.G. Bezerra, D.L. Wilson, M.A. Costa, A.M. Rollins, Automatic segmentation of intravascular optical coherence tomography images for facilitating quantitative diagnosis of atherosclerosis, Proc. SPIE (2011), p. 78890N

    Google Scholar 

  19. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver, Combinatorial Optimization (John Wiley & Sons, New York, 1998)

    Google Scholar 

  20. P. F. Felzenszwalb, R. Zabih, Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern. Anal. Mach. Intell 33(4), 721–740 (2011)

    Article  Google Scholar 

  21. K. Li, X. Wu, D.Z. Chen, M. Sonka, Optimal surface segmentation in volumetric images-A graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006)

    Article  Google Scholar 

  22. M.K. Garvin, M.D. Abramoff, R. Kardon, S.R. Russell, X. Wu, M. Sonka, Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008)

    Article  Google Scholar 

  23. X. Wu, D. Chen, P. Widmayer, S. Eidenbenz, F. Triguero, R. Morales, R. Conejo, M. Hennessy, Optimal Net Surface Problems with Applications, Automata, Languages and Programming. Lecture Notes in Computer Science 2380 (Springer, Berlin, 2002), pp. 1029–1042

    Book  Google Scholar 

  24. Q. Song, X. Wu, Y. Liu, M. Sonka, M. Garvin, Simultaneous searching of globally optimal interacting surfaces with shape priors, Proc. Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, IEEE (2010), pp. 2879–2886

    Google Scholar 

  25. P.A. Dufour, L. Ceklic, H. Abdillahi, S. Schroder, S. De Dzanet, U. Wolf-Schnurrbusch, J. Kowal, Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints. IEEE Trans. Med. Imaging 32(3), 531–543 (2012)

    Article  Google Scholar 

  26. J.C. Picard, Maximal closure of a graph and applications to combinatorial problems. Manag. Sci. 22(11), 1268–1272 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. D.S. Hochbaum, A new—old algorithm for minimum-cut and maximum-flow in closure graphs. Networks 37(4), 171–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Lombaert, Y. Sun, L. Grady, C. Xu, A multilevel banded graph cuts method for fast image segmentation, Proc. Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 1, (2005), pp. 259–265

    Google Scholar 

  29. Y.Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in ND images, Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 1, 105–112 (2001)

    Google Scholar 

  30. Y. Boykov, V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Google Scholar 

  31. D.S. Hochbaum, The pseudoflow algorithm: a new algorithm for the maximum-flow problem. Oper. Res. 58(4), 992–1009 (2008)

    Article  MathSciNet  Google Scholar 

  32. A.V. Goldberg, R.E. Tarjan, A new approach to the maximum-flow problem. J. ACM (JACM) 35(4), 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Some recent advances in network flows. SIAM Rev. 33(2), 175–219 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Sonka, M.D. Winniford, S.M. Collins, Robust simultaneous detection of coronary borders in complex images. IEEE Trans. Med. Imaging 14(1), 151–161 (1995)

    Article  Google Scholar 

  35. V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  36. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S. Osher, N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics (Springer-Verlag, New York, 2003)

    MATH  Google Scholar 

  38. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  39. C. Li, C. Xu, C. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 430–436

    Google Scholar 

  40. T.F. Chan, L.A. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  ADS  MATH  Google Scholar 

  41. Z. Wang, H. Kyono, H.G. Bezerra, H. Wang, M. Gargesha, C. Alraies, C. Xu, J.M. Schmitt, D.L. Wilson, M.A. Costa, A.M. Rollins, Semi-automatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. J. Biomed. Opt. 15(6), 061711 (2010)

    Article  ADS  Google Scholar 

  42. S. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer Verlag, New York, 2003)

    Book  MATH  Google Scholar 

  43. R. Virmani, F.D. Kolodgie, A.P. Burke, A. Farb, S.M. Schwartz, Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000)

    Article  Google Scholar 

  44. G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B.E. Bouma, G.J. Tearney, J.W. Oosterhuis, P.W. Serruys, Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J. Biomed. Opt. 15(1), 011105 (2010)

    Google Scholar 

  45. C. Xu, J.M. Schmitt, S.G. Carlier, R. Virmani, Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J. Biomed. Opt. 13(3), 034003–034003 (2008)

    Article  ADS  Google Scholar 

  46. C. Xu, J.M. Schmitt, T. Akasaka, T. Kubo, K. Huang, Automatic detection of stent struts with thick neointimal growth in intravascular optical coherence tomography image sequences. Phys. Med. Biol. 56(20), 6665 (2011)

    Article  Google Scholar 

  47. G. Unal, S. Gurmeric, S.G. Carlier, Stent implant follow-up in intravascular optical coherence tomography images. Int. J. Cardiovasc. Imaging 26(7), 809–816 (2010)

    Article  Google Scholar 

  48. G.T. Bonnema, K.O.H. Cardinal, S.K. Williams, J.K. Barton, An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets. Phys. Med. Biol. 53(12), 3083 (2008)

    Article  Google Scholar 

  49. H. Lu, M. Gargesha, Z. Wang, D. Chamié, G.F. Attizani, T. Kanaya, S. Ray, M.A. Costa, A.M. Rollins, H.G. Bezerra, D.L. Wilson, Automatic stent detection in intravascular OCT images using bagged decision trees. Biomed. Opt. Express 3(11), 2809–2824 (2012)

    Article  Google Scholar 

  50. Z. Wang. (2013) Intravascular Optical Coherence Tomography Image Analysis (Doctoral dissertation), Case Western Reserve University, Cleveland OH

    Google Scholar 

  51. J. Pearl, Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, San Francisco, 1988)

    Google Scholar 

  52. N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  53. D. Koller, N. Friedman, Probabilistic Graphical Models Principles and Techniques (The MIT Press, Cambridge, MA, 2009)

    Google Scholar 

  54. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  MathSciNet  Google Scholar 

  55. T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, K. Yoshida, Assessment of coronary arterial thrombus by optical coherence tomography. Am. J. Cardiol. 97(12), 1713–1717 (2006)

    Article  Google Scholar 

  56. N. Tanaka, M. Terashima, S. Rathore, T. Itoh, M. Habara, K. Nasu, M. Kimura, T. Itoh, Y. Kinoshita, M. Ehara, E. Tsuchikane, K. Asakura, Y. Asakura, O. Katoh, T. Suzuki, Different patterns of vascular response between patients with or without diabetes mellitus after drug-eluting stent implantation: optical coherence tomographic analysis. J. Am. Coll. Cardiol. Intv. 3(10), 1074–1079 (2010)

    Article  Google Scholar 

  57. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, P. Hansen, Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt. Express 12(2), 249–259 (2004)

    Article  ADS  Google Scholar 

  58. L. Thrane, H.T. Yura, P.E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. J. Opt. Soc. Am. A 17(3), 484–490 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  59. X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, A.M. Rollins, Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography. J. Biomed. Opt. 11(4), 044010 (2006)

    Article  ADS  Google Scholar 

  60. X. Qi, Y. Pan, M.V. Sivak, J.E. Willis, G. Isenberg, A.M. Rollins, Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography. Biomed. Opt. Express 1(3), 825–847 (2010)

    Article  Google Scholar 

  61. T.M. Mitchell, Machine Learning. WCB (WCB, McGraw-Hill Boston, 1997)

    Google Scholar 

  62. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, Proc. Computer Vision and Pattern Recognition, CVPR, vol. 881 (2005), pp. 886–893

    Google Scholar 

  63. D.G. Lowe, Object recognition from local scale-invariant features, Proc. Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2 (1999), pp. 1150–1157

    Google Scholar 

  64. H. Bay, T. Tuytelaars, L. Van Gool, Surf: Speeded up robust features. Computer Vision–ECCV 2006(Springer Berlin Heidelberg, 2006), pp. 404–417

    Google Scholar 

  65. P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 100(9), 917–922 (1977)

    Article  Google Scholar 

  66. R. Kohavi, G.H. John, Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  MATH  Google Scholar 

  67. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  68. F. Hussein, N. Kharma, R. Ward, Genetic algorithms for feature selection and weighting, a review and study, Proc. Document Analysis and Recognition, 2001. Proceedings. Sixth International Conference on, pp. 1240–1244

    Google Scholar 

  69. A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  70. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)

    MATH  Google Scholar 

  71. D.H. Wolpert, The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

  72. R.P. Choudhury, J.M. Lee, D.R. Greaves, Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nature 2(6), 309–315 (2005)

    Google Scholar 

  73. C.L. Lendon, M.J. Davies, G.V.R. Born, P.D. Richardson, Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87(1), 87–90 (1991)

    Article  Google Scholar 

  74. G.J. Tearney, H. Yabushita, S.L. Houser, H.T. Aretz, I.-K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, E.F. Halpern, B.E. Bouma, Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1), 113–119 (2003)

    Article  Google Scholar 

  75. S. Tahara, T. Morooka, Z. Wang, H.G. Bezerra, A.M. Rollins, D.I. Simon, M.A. Costa, Intravascular optical coherence tomography detection of atherosclerosis and inflammation in murine aorta. Arterioscler. Thromb. Vasc. Biol. 32(5), 1150–1157 (2012)

    Article  Google Scholar 

  76. C. Templin, M. Meyer, M.F. Müller, V. Djonov, R. Hlushchuk, I. Dimova, S. Flueckiger, P. Kronen, M. Sidler, K. Klein, F. Nicholls, J.R. Ghadri, K. Weber, D. Paunovic, R. Corti, S.P. Hoerstrup, T.F. Lüscher, U. Landmesser. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J. 31(14): 1792–1801. (2010)

    Google Scholar 

  77. P.W. Serruys, J.A. Ormiston, Y. Onuma, E. Regar, N. Gonzalo, H.M. Garcia-Garcia, K. Nieman, N. Bruining, C. Dorange, K. Miquel-Hébert, S. Veldhof, M. Webster, L. Thuesen, D. Dudek, A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373(9667), 897–910 (2009)

    Article  Google Scholar 

  78. J.A. Ormiston, P.W. Serruys, E. Regar, D. Dudek, L. Thuesen, M.W. Webster, Y. Onuma, H.M. Garcia-Garcia, R. McGreevy, S. Veldhof, A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371(9616), 899–907 (2008)

    Article  Google Scholar 

  79. G.J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P.R. Sinnaeve, M. Coosemans, W. Desmet, J. D’hooge, Automatic three-dimensional registration of intravascular optical coherence tomography images. J. Biomed. Opt. 17(2), 0260051–02600511 (2012)

    Article  Google Scholar 

  80. D. Chamié, D. Prabhu, Z. Wang, H. Bezerra, A. Erglis, D. L. Wilson, A. M. Rollins, M. A. Costa, Three-dimensional Fourier-domain optical coherence tomography imaging: advantages and future development, Curr. Cardiovasc. Imaging Rep. 5(4), 221–230 (2012)

    Google Scholar 

  81. T. Okamura, Y. Onuma, H.M. Garcia-Garcia, E. Regar, J.J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D.R. McClean, J.A. Ormiston, P.W. Serruys, 3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification. J. Am. Coll. Cardiol. Intv. 3(8), 836–844 (2010)

    Article  Google Scholar 

  82. K. Zhang, J.U. Kang, Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system. Opt. Express 18(11), 11772–11784 (2010)

    Article  ADS  Google Scholar 

  83. K. Zhang, J.U. Kang, Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT. Opt. Express 18(22), 23472–23487 (2010)

    Article  ADS  Google Scholar 

  84. Y. Jian, K. Wong, M.V. Sarunic, Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering. J. Biomed. Opt. 18(2), 026002–026002 (2013)

    Article  ADS  Google Scholar 

  85. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, R. Huber, High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. Biomed. Opt. Express 5(9), 2963–2977 (2014)

    Google Scholar 

  86. I. Biederman, Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)

    Article  Google Scholar 

  87. M. Sonka, V. Hlavac, R. Boyle, Image processing, analysis, and machine vision (Brooks/Cole Publishing Company, USA, 1999)

    Google Scholar 

  88. R. Tadeusiewicz, M.R. Ogiela, Medical image understanding technology (Springer, Berlin, Heidelberg, 2004)

    Google Scholar 

Download references

Acknowledgements

The authors thank Marco A. Costa, Hiram G. Bezerra, and all members of the Cardiovascular Imaging Core lab at the University Hospitals Case Medical Center (Cleveland OH); David L. Wilson, Michael Jenkins, David Prabbu, Hong Lu, and Madhusudhana Gargesha from the Department of Biomedical Engineering, and Soumya Ray from the Department of Electrical Engineering and Computer Science at Case Western Reserve University; Joseph M. Schmitt, Chenyang Xu, and other technical support from St. Jude Medical Inc (St. Paul, Minnesota). Some research presented here was supported in part by grants R01 HL114406, R21 HL108263 and R01 HL095717 from the National Institutes of Health and in part by the American Heart Association Predoctoral Fellowship (#11PRE7320034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Rollins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Wang, Z., Wilson, D.L., Bezerra, H.G., Rollins, A.M. (2015). Image Processing in Intravascular OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_17

Download citation

Publish with us

Policies and ethics