Skip to main content

Application of (Kohn–Sham) Density-Functional Theory to Real Materials

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

  • 1969 Accesses

Abstract

Hohenberg and Kohn proved the existence and uniqueness of a functional of the electron density, whose minimization yields the ground-state density \(n(r)\) of a bound system of \(N\) interacting electrons in some external potential \(v(r)\). The exact expression of the universal density functional is however elusive. In this chapter, I describe the several attempts made for designing an approximation to the density functional that gave accurate results for “real materials” (molecules, clusters, and extended materials). All discussed approximations originate from the Kohn–Sham approach, a particular (but almost universally adopted) formulation of the density-functional theory, in which the variational problem of the \(N\) interacting electrons is recast into a set of \(N\) one-particle equations where each electron acts in the mean field generated by all the other electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dynamics of the nuclei is trated at positive temperature, whereas the electronic wavefunction is considered at or near its ground state. Inclusion of non-adiabatic effects, i.e., loosely speaking, electronic excited levels are treated in this book in the chap. “Time-Dependent Density Functional Theory” by Doltsinis. Since there is no widespread technique for beyond-BO MD, I do not mention further this class of methods.

References

  1. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  2. Levy, M.: Phys. Rev. A 26, 1200 (1982)

    Article  ADS  Google Scholar 

  3. Lieb, E.H.: Rev. Mod. Phys. 53, 603 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  5. Wigner, E.P.: Trans. Faraday Soc. 34, 678 (1938)

    Article  Google Scholar 

  6. Ceperley, D.M., Alder, B.J.: Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  7. Kohn, W.: Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  8. Burke, K.: J. Chem. Phys. 136, 150901 (2012)

    Article  ADS  Google Scholar 

  9. Perdew, J.P.: Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  10. Perdew J.P.: Phys. Rev. B 34, 7406(E) (1986)

    Google Scholar 

  11. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  12. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 78, 1396(E) (1997)

    Google Scholar 

  13. Zhang, Y., Yang, W.: Phys. Rev. Lett. 80, 890 (1998)

    Article  ADS  Google Scholar 

  14. Giantomassi, M., Stankovski, M., Shaltaf, R., Gruning, M., Bruneval, F., Rinke, P., Rignanese, G.-M.: Phys. Status Solidi B 248, 275 (2011)

    Article  ADS  Google Scholar 

  15. Perdew, J.P., Parr, R.G., Levy, M., Balduz, J.L.: Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  16. Perdew, J.P.: Density functional methods in physics. In: Dreizler, R.M., da Providencia, J. (eds.) pp. 265308. Plenum, Berlin, (1985)

    Google Scholar 

  17. Grning, M., Marini, A., Rubio, A.: J. Chem. Phys. 124, 154108 (2006)

    Article  ADS  Google Scholar 

  18. Bartlett, R.J., MusiałRev, M.: Mod. Phys. 79, 291 (2007)

    Article  ADS  Google Scholar 

  19. Curtiss, L.A., Raghavachari, K., Trucks, G.W., Pople, J.A.: J. Chem. Phys. 94, 7221 (1991)

    Article  ADS  Google Scholar 

  20. Karton, A., Tarnopolsky, A., Lamére, J., Martin, J.M.L.: J. Phys. Chem. A 112, 12868 (2008)

    Article  Google Scholar 

  21. Jurec̆ka, P., Šponer, J., C̆erný, J., Hobza, P.: Phys. Chem. Chem. Phys. 8, 1985 (2006)

    Google Scholar 

  22. R̆ezáč, J., Riley, K.E., Hobza, P.: J. Chem. Theory Comput. 7, 2427 (2011)

    Google Scholar 

  23. Zhao, Y., Lynch, B.J., Truhlar, D.G.: J. Phys. Chem. A 108, 2715 (2004)

    Article  Google Scholar 

  24. Zhao, Y., Gonzalez-Garca, N., Truhlar, D.G.: J. Phys. Chem. A 109, 2012 (2005)

    Article  Google Scholar 

  25. Goerigk, L., Grimme, S.: Phys. Chem. Chem. Phys. 13, 6670 (2011)

    Article  Google Scholar 

  26. Becke, A.D.: J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  27. Lee, C., Yang, W., Parr, R.G.: Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  28. Seidl, A., Grling, A., Vogl, P., Majewski, J.A., Levy, M.: Phys. Rev. B 53, 3764 (1996)

    Article  ADS  Google Scholar 

  29. Heyd, J., Scuseria, G.E., Ernzerhof, M.: J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  30. Heyd, J., Scuseria, G.E.: J. Chem. Phys. 121, 1187 (2004)

    Article  ADS  Google Scholar 

  31. Savin, A. In: Seminario, J.J (ed.) Recent Developments and Applications of Modern Density Functional Theory, p. 327–357. Elsevier, Amsterdam (1996)

    Google Scholar 

  32. Brothers, E.N., Izmaylov, A.F., Normand, J.O., Barone, V., Scuseria, G.E.: J. Chem. Phys. 129, 011102 (2008)

    Article  ADS  Google Scholar 

  33. Jain, M., Chelikowsky, J.R., Louie, S.G.: Phys. Rev. Lett. 107, 216806 (2011)

    Article  ADS  Google Scholar 

  34. Bohm, D., Pines, D.: Phys. Rev. 92, 609 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Harl, J., Schimka, L., Kresse, G.: Phys. Rev. B 81, 115126 (2010)

    Article  ADS  Google Scholar 

  36. Grimme, S.: J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  37. Heimel, G., Romaner, L., Bredas, J.-L., Zojer, E.: Phys. Rev. Lett. 96, 196806 (2006)

    Article  ADS  Google Scholar 

  38. Rehr, J.J., Zaremba, E., Kohn, W.: Phys. Rev. B 12, 2062 (1975)

    Google Scholar 

  39. Langreth, D.C., Perdew, J.P.: Phys. Rev. B 15, 2884 (1977)

    Article  ADS  Google Scholar 

  40. Dobson, J.F. In: Das, M.P. (ed.) Topics in condensed matter physics, Ch. 7. Nova, New York ( 1994)

    Google Scholar 

  41. Hedin, L., Lundqvist, S. In: Solid State Physics: Advances in Research and Applications, vol. 23, p. 1. Academic Press, New York and London (1969)

    Google Scholar 

  42. Singwi, K.S., Tosi, M.P., Land, R.H., Sjolander, A.: Phys. Rev. 176, 589 (1968)

    Article  ADS  Google Scholar 

  43. Ren, X., Rinke, P., Joas, C., Scheffler, M.: J. Mater. Sci. 47, 7447 (2012)

    Article  ADS  Google Scholar 

  44. Ren, X., Tkatchenko, A., Rinke, P., Scheffler, M.: Phys. Rev. Lett. 106, 153003 (2011)

    Article  ADS  Google Scholar 

  45. Paier, J., Ren, X., Rinke, P., Scuseria, G.E., Gruneis, A., Kresse, G., Scheffler, M.: New J. Phys. 14, 043002 (2012)

    Article  ADS  Google Scholar 

  46. Tkatchenko, A., Scheffler, M.: Phys. Rev. Lett. 102, 073005 (2009)

    Article  ADS  Google Scholar 

  47. Andersson, Y., Langreth, D.C., Lundqvist, B.I.: Phys. Rev. Lett. 76, 102 (1996)

    Article  ADS  Google Scholar 

  48. Dion, M., Rydberg, H., Schrder, E., Langreth, D.C., Lundqvist, B.I.: Phys. Rev. Lett. 92, 246401 (2004)

    Article  ADS  Google Scholar 

  49. Langreth, D.C., Lundqvist, B.I., Chakarova-Kck, S.D., Cooper, V.R., Dion, M., Hyldgaard, P., Kelkkanen, A., Kleis, J., Kong, L., Li, S., Moses, P.G., Murray, E., Puzder, A., Rydberg, H., Schrder, E., Thonhauser, T.: J. Phys. Condens. Matter 21, 084203 (2009)

    Article  ADS  Google Scholar 

  50. Roman-Perez, G., Soler, J.: Phys. Rev. Lett. 103, 096102 (2009)

    Article  ADS  Google Scholar 

  51. Tkatchenko, A., Romaner, L., Hofmann, O.T., Zojer, E., Ambrosch-Draxl, C., Scheffler, M.: MRS Bull. 35, 435–442 (2010)

    Article  Google Scholar 

  52. Vydrov, O.A., Van Voorhis, T.: Phys. Rev. Lett. 103, 063004 (2009)

    Article  ADS  Google Scholar 

  53. Klimes, J., Bowler, D.R., Michaelides, A.: J. Phys. Condens. Matter 22, 022201 (2010)

    Article  ADS  Google Scholar 

  54. Tkatchenko, A., DiStasio Jr, R.A., Car, R., Scheffler, M.: Phys. Rev. Lett. 108, 236402 (2012)

    Article  ADS  Google Scholar 

  55. DiStasio Jr, R.A., von Lilienfeld, O.A., Tkatchenko, A.: Proc. Natl. Acad. Sci. USA 109, 14791 (2012)

    Article  ADS  Google Scholar 

  56. Zhang, G.-X., Tkatchenko, A., Paier, J., Appel, H., Scheffler, M.: Phys. Rev. Lett. 107, 245501 (2011)

    Article  ADS  Google Scholar 

  57. Ruiz, V.G., Liu, W., Zojer, E., Scheffler, M., Tkatchenko, A.: Phys. Rev. Lett. 108, 146103 (2012)

    Article  ADS  Google Scholar 

  58. DiStasio Jr, R.A., Gobre, V.V., Tkatchenko, A.: Psi-k Highlight of December (2012)

    Google Scholar 

  59. Lee, K., Murray, E.D., Kong, L., Lundqvist, B.I., Langreth, D.C.: Phys. Rev. B 92, 081101 (2010)

    Article  ADS  Google Scholar 

  60. Perdew, J.P., Ernzerhof, M., Burke, K.: J. Chem. Phys. 105, 9982 (1996)

    Article  ADS  Google Scholar 

  61. Zhao, Y., Truhlar, D.G.: Chem. Phys. Lett. 502, 1 (2011)

    Article  ADS  Google Scholar 

  62. Moussa, J.E., Schultz, P.A., Chelikowsky, J.R.: J. Chem. Phys. 136, 204117 (2012)

    Article  ADS  Google Scholar 

  63. Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E.: J. Chem. Phys. 125, 224106 (2006)

    Article  ADS  Google Scholar 

  64. Ehrenfest, P., Phys, Z.: A 45, 455 (1927)

    MATH  Google Scholar 

  65. Dirac, P.A.M.: Proc. Camb. Phil. Soc. 26, 376 (1930)

    Article  ADS  MATH  Google Scholar 

  66. Car, R., Parrinello, M.: Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  67. Andersen, H.C.: J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  68. Parrinello, M., Rahman, A.: Phys. Rev. Lett. 45, 1196 (1980)

    Article  ADS  Google Scholar 

  69. Galli, G., Martin, R.M., Car, R., Parrinello, M.: Phys. Rev. Lett. 63, 988 (1989)

    Google Scholar 

  70. Iftimie, R., Tuckerman, M.E.: J. Chem. Phys. 122, 214508 (2005)

    Article  ADS  Google Scholar 

  71. Sebastiani, D., Parrinello, M.: J. Phys. Chem. A 105, 1951 (2001)

    Article  Google Scholar 

  72. Grabowski, B., Ismer, L., Hickel, T., Neugebauer, J.: Phys. Rev. B 79, 134106 (2009)

    Article  ADS  Google Scholar 

  73. Hohl, D., Jones, R.O.: Phys. Rev. B 50, 17047 (1994)

    Article  ADS  Google Scholar 

  74. Morishita, T.: Phys. Rev. Lett. 87, 105701 (2001)

    Article  ADS  Google Scholar 

  75. Ghiringhelli, L.M., Meijer, E.J.: J. Chem. Phys. 122, 184510 (2005)

    Article  ADS  Google Scholar 

  76. Marx, D., Tuckerman, M.E., Hutter, J., Parrinello, M.: Nature 397, 601 (1999)

    Article  ADS  Google Scholar 

  77. Marx, D., Hutter, J. In: Grotendorst, J. (ed.) Modern methods and algorithms of quantum chemistry. John von Neumann Institute for Computing, Jülich, NIC Series, vol. 1, p. 301 (2000)

    Google Scholar 

  78. Kirchner, B., di Dio, P.J., Hutter, J.: Top. Curr. Chem. 307, 109 (2012)

    Article  Google Scholar 

  79. Silvestrelli, P.L., Parrinello, M.: Phys. Rev. Lett. 82, 3308 (1999)

    Google Scholar 

  80. VandeVondele, J., Mohamed, F., Krack, M., Hutter, J., Sprik, M., Parrinello, M.: J. Chem. Phys. 122, 014515 (2005)

    Article  ADS  Google Scholar 

  81. Bühl, M., Chaumont, A., Schurhammer, R., Wipff, G.: J. Phys. Chem. B 109, 18591 (2005)

    Article  Google Scholar 

  82. Laasonen, K., Klein, M.L.: J. Am. Chem. Soc. 116, 11620 (1994)

    Article  Google Scholar 

  83. Krekeler, C., Delle, L.: Site. J. Phys. Condens. Matter 19, 192101 (2007)

    Google Scholar 

  84. Pagliai, M., Raugei, S., Cardini, G., Schettino, V.: J. Mol. Struct. (Theochem) 630, 141 (2003)

    Article  Google Scholar 

  85. Blumberger, J., Tateyama, Y., Sprik, M.: Comput. Phys. Commun. 169, 256 (2005)

    Article  ADS  Google Scholar 

  86. Bussi, G., Donadio, D., Parrinello, M.: J. Chem. Phys. 126, 014101 (2007)

    Article  ADS  Google Scholar 

  87. Ceriotti, M., Bussi, G., Parrinello, M.: J. Chem. Theory Comput. 6, 1170 (2010). http://gle4md.berlios.de/

  88. De Koning, M., Antonelli, A., Yip, S.: Phys. Rev. Lett. 83, 3973 (1999)

    Article  ADS  Google Scholar 

  89. Laio, A., Parrinello, M.: Proc. Natl. Acad. Sci. 99, 12562 (2002)

    Article  ADS  Google Scholar 

  90. Martonák, R., Laio, A., Parrinello, M.: Phys. Rev. Lett. 90, 075503 (2003)

    Article  ADS  Google Scholar 

  91. Wang, X., Scandolo, S., Car, R.: Phys. Rev. Lett. 95, 185701 (2005)

    Article  ADS  Google Scholar 

  92. Donadio, D., Spanu, L., Duchemin, I., Gygi, F., Galli, G.: Phys. Rev. B 82, 020102(R) (2010)

    Article  ADS  Google Scholar 

  93. Martonak, R., Donadio, D., Oganov, A.R., Parrinello, M.: Nat. Mater. 5, 623 (2006)

    Article  ADS  Google Scholar 

  94. Rossi, M., Blum, V., Kupser, P., von Helden, G., Bierau, F., Pagel, K., Meijer, G., Scheffler, M.: J. Phys. Chem. Lett. 1, 3465–3470 (2010)

    Article  Google Scholar 

  95. Tkatchenko, A., Rossi, M., Blum, V., Ireta, J., Scheffler, M.: Phys. Rev. Lett. 106, 118102 (2011)

    Article  ADS  Google Scholar 

  96. Ghiringhelli, L.M., Gruene, P., Lyon, J.T., Rayner, D.M., Meijer, G., Fielicke, A., Scheffler, M.: New J. Phys. 15, 083003 (2013)

    Google Scholar 

  97. Stampfl, C., Ganduglia-Pirovano, M.V., Reuter, K., Scheffler, M.: Surf. Sci. 500, 368–394 (2002)

    Article  ADS  Google Scholar 

  98. Reuter, K., Scheffler, M.: Phys. Rev. B 65, 035406 (2001)

    Article  ADS  Google Scholar 

  99. Reuter, K., Scheffler, M.: Phys. Rev. B 68, 045407 (2003)

    Article  ADS  Google Scholar 

  100. Beret, E.C., Ghiringhelli, L.M., Scheffler, M.: Faraday Discuss. 152, 153 (2011)

    Article  ADS  Google Scholar 

  101. Beret, E.C., van Wijk, M.M., Ghiringhelli, L.M.: Int. J. Quantum Chem. 114, 57 (2014)

    Article  Google Scholar 

  102. Bhattacharya, S., Levchenko, S., Ghiringhelli, L.M., Scheffler, M.: Phys. Rev. Lett. 111, 135501 (2013)

    Google Scholar 

  103. Weinart, C.M., Scheffler, M.: Defects in semiconductors. Mat. Sci. Forum 1012, (1986)

    Google Scholar 

  104. Scheffler, M., Dabrowski, J.: Philos. Mag. A 58, 107 (1988)

    Article  ADS  Google Scholar 

  105. Richter, N.A., Sicolo, S., Levchenko, S.V., Sauer, J., Scheffler, M.: Phys. Rev. Lett. 111, 045502 (2013)

    Article  ADS  Google Scholar 

  106. Lee, S.-H., Moritz, W., Scheffler, M.: Phys. Rev. Lett. 85, 3890 (2000)

    Article  ADS  Google Scholar 

  107. Perdew, J.P., Zunger, A.: Phys. Rev. B 23, 5048 (1981)

    Google Scholar 

  108. Curtiss, L.A., Raghavachari, K., Trucks, G.W., Pople, J.A.: J. Chem. Phys. 94, 7221 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca M. Ghiringhelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghiringhelli, L.M. (2014). Application of (Kohn–Sham) Density-Functional Theory to Real Materials. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_10

Download citation

Publish with us

Policies and ethics