Skip to main content

Nonlinear Hamiltonian Systems

  • Chapter
  • First Online:
Nonlinear Dynamics and Quantum Chaos

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

In this chapter we investigate the dynamics of classical nonlinear Hamiltonian systems, which—a priori—are examples of continuous dynamical systems. As in the discrete case (see examples in Chap. 2), we are interested in the classification of their dynamics. After a short review of the basic concepts of Hamiltonian mechanics, we define integrability (and therewith regular motion) in Sect. 3.4. The non-integrability property is then discussed in Sect. 3.5. The addition of small non-integrable parts to the Hamiltonian function (Sects. 3.6.1 and 3.7) leads us to the formal theory of canonical perturbations, which turns out to be a highly valuable technique for the treatment of systems with one degree of freedom and shows profound difficulties when applied to realistic systems with more degrees of freedom. We will interpret these problems as the seeds of chaotic motion in general. A key result for the understanding of the transition from regular to chaotic motion is the KAM theorem (Sect. 3.7.4), which assures the stability in nonlinear systems that are not integrable but behave approximately like them. Within the framework of the surface of section technique, chaotic motion is discussed from a phenomenological point of view in Sect. 3.8. More quantitative measures of local and global chaos are finally presented in Sect. 3.9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A separatrix is a boundary in phase space separating two regions of qualitatively different motions, see Fig. 3.1 below for the pendulum.

  2. 2.

    To simplify the notation, vector quantities are not always specified in boldface. From the local context it should be clear that the corresponding symbols represent \(n\)-dimensional vectors.

  3. 3.

    This is due to the fact that the velocity field of \((q,p)\), which is given by \(J \cdot \nabla H(q,p)\) in Eq. (3.2.1) does not depend on time [7].

  4. 4.

    From a mathematical point of view \(Q(q,t)\) has to be a diffeomorphism (differentiable and invertible) for all \(t\).

  5. 5.

    As for the coordinates, the transformation from the old to the new variables has to be a diffeomorphism, see previous footnote.

  6. 6.

    The notion quadrature means the application of basic operations such as addition, multiplication, the computation of inverse functions and the calculation of integrals along a path.

  7. 7.

    The set \(M_C\) is not compact if the motion is not restricted to a finite area in phase space. Examples for such unbounded motion are the free particle or a particle in a linear potential (Wannier-Stark problem).

  8. 8.

    There can be more than one such parameter but for simplicity we assume only one. This result is strictly true only if the angular frequency \(\omega (I,\lambda )\) never equals zero, see [6] and Sect. 3.7.2.

  9. 9.

    This ansatz implicitly takes account of the symplectic structure of the variables \(\eta \) and \(\xi \), i.e. of the area preservation conserved also by the perturbation. The orderly way of doing perturbation theory is formally introduced in the next section.

  10. 10.

    Note that we can assume in Eq. (3.6.26) \(\dot{\theta }\approx \omega \) within this approximation.

  11. 11.

    C.f. footnote in Sect. 3.6.1.

  12. 12.

    Number theory shows that the continued fraction representation is unique [26].

  13. 13.

    The winding number \(\alpha \) depends via the frequencies on both actions \(I_1\) and \(I_2\) but we skip the dependence on \(I_2\) in the following since \(I_2\) is fixed for the Poincaré map, c.f. Eq. (3.8.1).

  14. 14.

    If the map \({\fancyscript{P}}_n\) has a fixed point \(z^*\) there will always be \(n-1\) other fixed points of \({\fancyscript{P}}_n\) given by \({\fancyscript{P}}_i(z^*)\) \((i=1,\ldots ,n-1)\), see Sect. 2.2.1. We say these fixed points belong to the same family.

  15. 15.

    For a short introduction to measures theory consult, e.g., Lieb and Loss [36].

  16. 16.

    For almost every \(\omega \in \Omega \) means for all \(\omega \) except a set of measure zero.

  17. 17.

    To be more precise the points of the trajectory \(z(t)\) are dense on the torus [6].

References

  1. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2005)

    Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  3. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series and Products. Academic Press, New York (1980)

    Google Scholar 

  4. Rebhan, E.: Theoretische Physik: Mechanik. Spektrum Akademischer Verlag, Heidelberg (2006)

    Google Scholar 

  5. Landau, L.D., Lifschitz, E.M.: Course in Theoretical Physics I, Mechanics. Pergamon Press, Oxford (1960)

    Google Scholar 

  6. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  7. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1988)

    Book  Google Scholar 

  8. Scheck, F.: Mechanics: from Newton’s Laws to Deterministic Chaos. Springer, Heidelberg (2007)

    Google Scholar 

  9. Dürr, D.: Bohmsche Mechanik als Grundlage der Quantenmechanik. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  10. Schwabl, F.: Quantum Mechanics. Springer, Berlin (2005)

    Google Scholar 

  11. Poincaré, H.: Les Méthodes nouvelles de la méchanique céleste. Gauthier-Villars (1899)

    Google Scholar 

  12. Kolmogorov, A.N.: Dokl. Akad. Nauk. SSR 98, 527 (1954)

    MATH  MathSciNet  Google Scholar 

  13. Arnold, V.I.: Russ. Math. Surv. 18, 13 (1963)

    Article  Google Scholar 

  14. Arnold, V.I.: Dokl. Akad. Nauk SSSR 156, 9 (1964)

    MathSciNet  Google Scholar 

  15. Moser, J.K.: Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II(1), 1 (1962)

    Google Scholar 

  16. Moser, J.K.: Math. Ann. 169, 136 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  17. Percival, I.C., Richards, D.: Introduction to Dynamics. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  18. Dehmelt, H.G.: Adv. At. Mol. Phys. 3, 53 (1967)

    Article  ADS  Google Scholar 

  19. Paul, W.: Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  20. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics. Wiley, New York (1989)

    Google Scholar 

  21. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  22. Moser, J.K.: Stable and Random Motion in Dynamical Systems. Princton University Press, Princeton (2001)

    Google Scholar 

  23. Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. W. A. Benjamin, New York (1968)

    Google Scholar 

  24. Chierchia, L., Mather, J.N.: Scholarpedia 5(9), 2123 (2010)

    Article  ADS  Google Scholar 

  25. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  27. Buchleitner, A., Delande, D., Zakrzewski, J.: Physics Reports 368(5), 409 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Chirikov, B., Shepelyansky, D.: Scholarpedia 3(3), 3550 (2008)

    Article  ADS  Google Scholar 

  29. Chirikov, B.V.: Physics Reports 52(5), 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  30. Berry, M.V.: In Topics in nonlinear mechanics. In: Jorna, S. (ed.) American Institute of Physics Conference Proceedings, vol. 46, pp. 16–120 (1978)

    Google Scholar 

  31. Hénon, M., Heiles, C.: Astron. J. 69, 73 (1964)

    Article  ADS  Google Scholar 

  32. Gaspard, P.: Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  33. Schuster, H.G.: Deterministic Chaos. VCH, Weinheim (1988)

    Google Scholar 

  34. Weisstein, E.W.: Double Pendulum. MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/DoublePendulum.html

  35. Korsch, H.J., Jodl, H.J., Hartmann, T.: Chaos—A Program Collection for the PC. Springer, Berlin (2008)

    Google Scholar 

  36. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  37. Landau, L.D., Lifschitz, E.M.: Course in Theoretical Physics V, Statistical Physics. Butterworth-Heinemann, Oxford (1990)

    Google Scholar 

  38. Sinai, Y.G.: Uspekhi Mat. Nauk 25(2), 141 (1970)

    Google Scholar 

  39. Chernov, N., Marhavian, R.: Chaotic Billiards. American Mathematical Society, Providence (2006)

    Google Scholar 

  40. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  41. Benettin, G., Froeschle, C., Schneidecker, J.P.: Phys. Rev. A 19, 2454 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  42. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Meccanica 15, 9 (1980)

    Article  ADS  MATH  Google Scholar 

  43. Sinai, Y.: Scholarpedia 4(3), 2034 (2009)

    Article  ADS  Google Scholar 

  44. van Beijeren, H., Latz, A., Dorfman, J.R.: Phys. Rev. E 57, 4077 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  45. Bunimovich, L., Burago, D., Chernov, N., Cohen, E., Dettmann, C., Dorfman, J., Ferleger, S., Hirschl, R., Kononenko, A., Lebowitz, J., Liverani, C., Murphy, T., Piasecki, J., Posch, H., Simanyi, N., Sinai, Y., Szasz, D., Tel, T., van Beijeren, H., van Zon, R., Vollmer, J., Young, L.: Hard Ball Systems and the Lorentz Gas. Springer, Berlin (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Wimberger .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wimberger, S. (2014). Nonlinear Hamiltonian Systems. In: Nonlinear Dynamics and Quantum Chaos. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06343-0_3

Download citation

Publish with us

Policies and ethics