Skip to main content

Advances in Remote Sensing of Coastal Wetlands: LiDAR, SAR, and Object-Oriented Case Studies from North Carolina

  • Chapter
  • First Online:
Remote Sensing and Modeling

Part of the book series: Coastal Research Library ((COASTALRL,volume 9))

Abstract

Coastal wetlands provide crucial ecosystem services to society including pollution filtration, fish and wildlife nursery and habitat, storm surge mitigation, and sinks for atmospheric carbon. Uncertainty of wetland responses to sea-level rise is a pervasive concern in coastal science and management. Advances in Light Detection and Ranging (LiDAR), space-borne Synthetic Aperture Radar (SAR), and multi-sensor and object-oriented image analysis techniques are poised to aid the inventorying, monitoring and management of wetlands to an even greater extent. This chapter reviews developments and coastal wetland applications of these state of the art remote sensing data and techniques and evaluates the utility of these products for management of coastal reserves in case studies. Following concise review of the literature on remote sensing technological and image processing advances, case studies from North Carolina coastal wetlands are presented: (1) multidate SAR and LiDAR imagery for regional salt marsh mapping in Cedar Island National Wildlife Refuge, (2) object-based image analysis (OBIA) for transitional marshes and Phragmites australis inventory in Alligator River National Wildlife Refuge, and (3) very fine resolution barrier island mapping using multisensor and multidate imagery and OBIA techniques in the Rachel Carson Coastal Reserve. Drawing upon these developments and case studies, insights for practical applications are evaluated to further even wider application to coastal management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar M, Aliabadi S, Patel R, Watts M (2013) A fully automated and integrated multi-scale forecasting scheme for emergency preparedness. Environ Model Software 39:24–38

    Article  Google Scholar 

  • Allen TR, Wang Y, Gore B, Swords J, Newcomb D (2011) Coastal Wetland mapping Using Time Series SAR Imagery and LiDAR: Alligator River National Wildlife Refuge, North Carolina. In: Proceedings, Pecora 18 symposium, Herndon, Virginia, 14–17 November

    Google Scholar 

  • Allen YC, Couvillion BR, Barras JA (2012) Using multitemporal remote sensing imagery and inundation measures to improve land change estimates in coastal wetlands. Estuar Coasts 35:190–200

    Article  Google Scholar 

  • Allen TR, Wang Y, Gore B (2013) Coastal wetland mapping combining multi-date SAR and LiDAR in North Carolina. Geocarto Int 28(7):616–631

    Article  Google Scholar 

  • Aplin P, Smith GM (2008) Advances in object-based image classification. Int Arch Photogramm Remote Sens Spat Inf Sci vol XXXVII(B7):725–728, Beijing

    Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16. doi:10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  • Borgeau-Chavez LL, Smith KB, Brunzell SM, Kasischke ES, Romanowicz EA, Richardson CJ (2005) Remote sensing of regional inundation patterns and hydroperiod in the Greater Everglades using synthetic aperture radar. Wetlands 25(1):176–191

    Article  Google Scholar 

  • Carle MV (2011) Estimating wetland losses and gains in coastal North Carolina: 1994–2001. Wetlands 31:1275–1285

    Article  Google Scholar 

  • Chambers JQ, Fisher JI, Zeng H, Chapman EL, Baker DB, Hurtt GC (2007) Hurricane Katrina’s carbon footprint on U.S. Gulf Coast forests. Science 318(5853):1107. doi:10.1126/science.1148913, 16

    Article  Google Scholar 

  • Chen Y, Huang C, Ticehurst C, Merrin L, Thew P (2013) An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping. Wetlands 33:823–835

    Article  Google Scholar 

  • Chmura GL (2013) What do we need to assess the sustainability of the tidal salt marsh carbon sink? Oceans Coast Manag 83:25–31. doi:10.1016/j.ocecoaman.2011.09.006

    Article  Google Scholar 

  • Coe MT (2000) Modeling terrestrial hydrologic systems at the continental scale: testing the accuracy of an atmospheric GCM. J Climate 13:686–704

    Article  Google Scholar 

  • Corcoran JM, Knight JF, Gallant AL (2013) Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota. Remote Sens 2013(5):3212–3238. doi:10.3390/rs5073212

    Article  Google Scholar 

  • Couvillion BR, Beck H (2013) Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data. J Coast Res 63:58–67

    Article  Google Scholar 

  • Couvillion BR, Steyer GD, Wang H, Beck HJ, Rybczyk JM (2013) Forecasting the effects of coastal protection and restoration projects on wetland morphology in coastal Louisiana under multiple environmental uncertainty scenarios. J Coast Res 67:29–50

    Article  Google Scholar 

  • Crist EP, Cicone RC (1984) A physically-based transformation of thematic mapper data – the TM tasseled cap. IEEE Trans Geosci Remote Sens GE-22:256–263

    Article  Google Scholar 

  • Dai L, LIU C (2010) Multiple classifier combination for land cover classification of remote sensing image. In: Proceedings, 2nd International Conference on Information Science and Engineering (ICISE), Beijing, Institute of Geographic Sciences and Natural Resources Research, pp 3835–3839

    Google Scholar 

  • Dehouck A, Lafon V, Baghdadi N, Marieu V (2012) Use of optical and radar data in synergy for mapping intertidal flats and coastal salt-marshes (Arcachon Lagoon, France). Geosci Remote Sens Symp (IGARSS) 2011, IEEE International. Available http://www.halcyon.com/pub/journals/21ps03-vidmar. Last accessed 1 May 2011

  • Dobson JD, Bright EA (1991) CoastWatch – detecting change in coastal wetlands. Geo Info Syst 1:36–40

    Google Scholar 

  • Donelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc Natl Acad Sci 98(25):14218–14223. doi:10.1073/pnas.251209298

    Article  Google Scholar 

  • Dresback KM, Fleming JG, Blanton BO, Kaiser C, Gourley JJ, Tromble EM, Luettich RA Jr, Kolar RL, Hong Y, van Cooten A, Vergara HJ, Flamig ZL, Lander HM, Kelleher KE, Nemunaitis-Monroe KL (2013) Skill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane Irene (2011). Cont Shelf Res 71:78–94

    Article  Google Scholar 

  • Franklin SE (1991) Satellite remote sensing of mountain geomorphic surfaces. Can J Remote Sens 17(3):218–229

    Google Scholar 

  • Hamilton SK, Kellndorfer J, Lehner B, Tobler M (2007) Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology 89:23–38

    Article  Google Scholar 

  • Heumann BW (2011) An object-based classification of mangroves using a hybrid decision tree – support vector machine approach. Remote Sens 3:2440–2460

    Article  Google Scholar 

  • Hladik C, Alber M (2012) Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens Environ 121:224–235

    Article  Google Scholar 

  • Hofel B, Vetter M, Pfeiffer N, Mandlburger G, Stotter J (2009) Water surface mapping from airborne laser scanning using signal intensity and elevation data. Earth Surf Proc Land 34(12):1635–1649

    Article  Google Scholar 

  • Hupp CR (1988) Plant ecological aspects of flood geomorphology and paleoflood history. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 335–356

    Google Scholar 

  • Jensen JR, Cowen D, Althausen JD, Narumalani S, Weatherbee O (1993) An evaluation of CoastWatch change detection protocol in South Carolina. Photogramm Eng Remote Sens 59(6):1039–1046

    Google Scholar 

  • Kamal M, Phinn S (2011) Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach. Remote Sens 3:2222–2242. doi:10.3390/rs3102222

    Article  Google Scholar 

  • Kasischke ES, Bourgeau-Chavez LL (1997) Monitoring south Florida wetlands using ERS-1 SAR imagery. Photogramm Eng Remote Sens 33:281–291

    Google Scholar 

  • Kearney MS, Rogers AS (2010) Forecasting sites of future coastal marsh loss using topographical relationships and logistic regression. Wetlands Ecol Manag 18(4):449–461

    Article  Google Scholar 

  • Kearney MS, Stutzer D, Turpie K, Stevenson JC (2009) The effects of tidal inundation on the reflectance characteristics of coastal marsh vegetation. J Coast Res 25(6):1177–1186

    Article  Google Scholar 

  • Kelly M, Tuxen KA (2009) Remote sensing support for tidal wetland vegetation research and management. In: Yang X (ed) Remote sensing and geospatial technologies for coastal ecosystem assessment and management. Lecture notes in geoinformation and cartography. Springer, Heidelberg, pp 341–363

    Chapter  Google Scholar 

  • Kelly M, Tuxen KA, Stralberg D (2011) Mapping changes to vegetation pattern in a restoring wetland: finding pattern metrics that are consistent across spatial scale and time. Ecol Indic 11:263–273. doi:10.1016/j.ecolind.2010.05.003

    Article  Google Scholar 

  • Kim M, Warner TA, Madden M, Atkinson DS (2011) Multi-scale GEOBIA with very high resolution digital aerial imagery: scale, texture and image objects. Int J Remote Sens 32(10):2825–2850

    Article  Google Scholar 

  • King SD, Green DR (2009) Matching issue to utility: an hierarchical store of remotely sensed imagery for coastal zone management. In: Green DR, King SD (eds) Coastal and marine geo-information systems. Coastal systems and continental margins. Kluwer, Dordrecht, pp 474–486

    Google Scholar 

  • Klemas V (2009) Sensors and techniques for observing coastal systems. In: Yang X (ed) Remote sensing and geospatial technologies for coastal ecosystem assessment and management. Lecture notes in geoinformation and cartography. Springer, Heidelberg, pp 17–43

    Chapter  Google Scholar 

  • Klemas V (2013a) Remote sensing of coastal wetland biomass: an overview. J Coast Res 29(5):1016–1028

    Article  Google Scholar 

  • Klemas V (2013b) Remote sensing of emergent and submerged wetlands: an overview. Int J Remote Sens 34(18):6286–6320

    Article  Google Scholar 

  • Klemas VV, Dobson JE, Ferguson RL, Haddad KD (1993) A coastal land cover classification system for the NOAA CoastWatch change analysis project. J Coast Res 9(3):862–872

    Google Scholar 

  • Kushwaha SPS, Dwivedi RS, Rao BRM (2000) Evaluation of various digital image processing techniques for detection of coastal wetlands using ERS-1 SAR data. Int J Remote Sens 21(3):565–579

    Article  Google Scholar 

  • Lang MW, Kasischke ES, Prince SD, Pittman KW (2008) Assessment of C-band synthetic aperture radar for mapping and monitoring coastal plain forested wetlands in the Mid-Atlantic region, U.S.A. Remote Sens Environ 112:4120–4130

    Article  Google Scholar 

  • Lang M, Mccarty G, Oesterling R, Yeo I (2013) Topographic metrics for improved mapping of forested wetlands. Wetlands 33:141–155

    Article  Google Scholar 

  • Lee Y, Park J, Choi J, Oh Y, Choi J, Oh HY, Won J (2012) Potential uses of TerraSAR-X for mapping herbaceous halophytes over salt marsh and tidal flats. Estuar Coast Shelf Sci 115:366–376

    Article  Google Scholar 

  • Loveland TR, Merchant JW, Ohlen DO, Brown JF (1991) Development of a land-cover characteristics database for the conterminous U.S. Photogramm Eng Remote Sens 57(11):1453–1463

    Google Scholar 

  • Lunetta RS, Evlidge CD (eds) (1988) Remote sensing change detection: environmental monitoring methods and applications. Taylor and Francis, London

    Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Bjor M, Duarte CM, Lovelock CF, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560. doi:10.1890/110004

    Article  Google Scholar 

  • Meyerson LA, Saltonstall K, Chambers RM (2009) Phragmites australis in eastern North America: a historical and ecological perspective. In: Silliman BRE, Grosholz M, Bertness D (eds) Salt marshes under global siege. University of California Press, Berkley, pp 57–82

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Pal M, Mather P (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ 86:554–565

    Article  Google Scholar 

  • Phinn SR, Roelfsema CM, Mumby PJ (2012) Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int J Remote Sens 33(12):3768–3797

    Article  Google Scholar 

  • Platt RV, Rapoza L (2008) An evaluation of an object-oriented paradigm for land use/land cover classification. Prof Geogr 60(1):87–100

    Article  Google Scholar 

  • Pontius RG, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429

    Article  Google Scholar 

  • Poulter B, Halpin PN (2008) Raster modelling of coastal flooding from sea‐level rise. Int J Geogr Info Sci 22(2):167–182. doi:10.1080/13658810701371858

    Article  Google Scholar 

  • Ramsey E III, Rangoonwala A, Suzuoki Y, Jones C (2011) Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR). Remote Sens 3(12):2630–2662

    Article  Google Scholar 

  • Ramsey E III, Werle D, Suzuoki Y, Rangoonwala A, Lu Z (2012) Limitations and potential of satellite imagery to monitor environmental response to coastal flooding. J Coast Res 28(2):457–476

    Article  Google Scholar 

  • Rodrigues SWP, Souza-Filho P (2013) Mapping of environmental sensitivity index to oil spill from Landsat TM images: a study case on the Amazon coastal plain. Rev Bras Geofis 30(4):533–543

    Google Scholar 

  • Rogers AS, Kearney MS (2004) Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int J Remote Sens 25:2317–2335

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci 99(4):2445–2449

    Article  Google Scholar 

  • Schmid KA, Hadley BC, Wijekoon N (2011) Vertical accuracy and use of topographic LIDAR data in coastal marshes. J Coast Res 27(6):116–132

    Article  Google Scholar 

  • South S, Qi J, Lusch DP (2004) Optimal classification methods for mapping agricultural tillage practices. Remote Sens Environ 91:90–97

    Article  Google Scholar 

  • Timm BC, Mcgarigal K (2012) Fine-scale remotely-sensed cover mapping of coastal dune and salt marsh ecosystems at Cape Cod National Seashore using random forests. Remote Sens Environ 127:106–117

    Article  Google Scholar 

  • Townsend PA, Walsh SJ (1998) Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 21:295–312

    Article  Google Scholar 

  • Wang Y (2004) Seasonal change in the extent of inundation on floodplains detected by JERS-1 synthetic aperture radar data. Int J Remote Sens 25(13):2497–2508

    Article  Google Scholar 

  • Wang Y, Allen TR (2008) Estuarine shoreline change detection using Japanese ALOS PALSAR HH and JERS-1 L-HH SAR data in the Albemarle-Pamlico Sounds, North Carolina, USA. Int J Remote Sens 29(15):4429–4442

    Article  Google Scholar 

  • Wang Y, Colby JD, Mulcahy KA (2002) An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. Int J Remote Sens 23(18):3681–3696

    Article  Google Scholar 

  • Wang W, Qu JJ, Hao X, Liu Y, Stanturf JA (2010) Post-hurricane forest damage assessment using satellite remote sensing. Agric For Meteorol 150(1):122–132

    Article  Google Scholar 

  • Weih Jr RS, Riggan ND (2010) Object-based classification vs. pixel-based classification: comparative [sic] importance of multi-resolution imagery. Int Arch Photogramm Remote Sens Spat Inf Sci, Vol. XXXVIII-4/C7. Available at http://www.isprs.org/proceedings/xxxviii/4-c7/pdf/Weih_81.pdf. Last accessed 23 Apr 2013

  • Yoon J, Shim J (2013) Estimation of storm surge inundation and hazard mapping for the southern coast of Korea. J Coast Res 65:856–861

    Google Scholar 

  • Zhang SP, Wang RQ, Zhang Z (2003) Study on morphological variation of Phragmites australis in the Yellow River downstream wetland. Chin J Plant Ecol 27(1):78–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Allen, T.R. (2014). Advances in Remote Sensing of Coastal Wetlands: LiDAR, SAR, and Object-Oriented Case Studies from North Carolina. In: Finkl, C., Makowski, C. (eds) Remote Sensing and Modeling. Coastal Research Library, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-06326-3_17

Download citation

Publish with us

Policies and ethics