Skip to main content

Emissions

  • Chapter
  • First Online:
Circulating Fluidized Bed Boilers
  • 2222 Accesses

Abstract

The combustion of fossil fuels in stationary and transportation systems is the main source of man-made (anthropogenic) air pollution. Various boilers, furnaces, and engines burning fossil fuels emit gaseous pollutants, such as SO2, NO X , CO, and fly ash. Sulfur dioxide is a major contributor to acid rain. Nitrogen oxide (NO X ), which represents both nitric oxide (NO) and nitrogen dioxide (NO2), contributes to acid rain and smog. Though nitrous oxide (N2O) is another form of nitrogen oxide, it is not a part of the NO X . Nitrous oxide is a greenhouse gas and contributes to the global warming. Carbon dioxide (CO2) is the most important contributor to global warming and thus its emission intensity (g CO2/kWhe) is a major environmental index of a power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IEA conversion for lb/MMBTU (million Btu) for dry flue gas with 6 % O2 is 350 Nm3/GJ for coal.

Abbreviations

A :

Cross section of the furnace, m2

A e :

Area of the furnace exit, m2

a :

Exponent in bed density profile, m−1

ASH:

Weight fraction of ash in fuel

(Ca/S):

Calcium to sulfur molar ratio

C c :

Molar concentration of sorbents in the bed, kmol/m3

\(C_{{{\text{SO}}_{ 2} }}\) :

Concentration of sulfur dioxide, kmol/m3

\(C_{{s_{0} }}\) :

Concentration of sulfur dioxide at x = 0, kmol/m3

\(C_{{{\text{SO}}_{ 2} }} \left( x \right)\) :

Concentration of sulfur dioxide at x, kmol/m3

d :

Diameter, m

E :

Activation energy, kJ/kmol

E e :

Solid collection efficiency of the furnace exit

E c :

Average cyclone efficiency

E sor :

Sulfur capture efficiency

F c :

Coal feed rate, kg/s

F sor :

Sorbent feed rate, kg/s

f c :

Weight fraction of unreacted sorbent in bed materials

G d :

Downward solid flux, kg/m2s

G u :

Upward solid flux, kg/m2s

G s :

Solid recycle rate, kg/m2s

H :

Height of the boiler furnace above the secondary air level, m

HHV:

Higher heating value of fuel, kJ/kg

K(t):

Reactivity of sorbent particles at time t, s−1

K :

Reaction rate of sulfation, m3/kmol s

L :

Emission limit, kg sulfur/kJ heat release

M ca :

Moles of calcium or CaCO3 in sorbent particle, kmol

M cao :

Molecular weight of calcium oxide, 56 kg/kmol

m :

Local rate of SO2 formation, kmol/m3s

Σm d, out :

Sum of all outflows of sorbents of size d and d + Δd, kg/s

\(M_{{{\text{caco}}_{ 3} }}\) :

Molecular weight of limestone, 100 kg/kmol

n :

Index of reaction rate

p :

Moles of calcium per unit volume of sorbent particle, kmol/m3

P e :

Equilibrium partial pressure of CO2

P* :

Proportionality constant in Eq. (5.16), s. kmol/m3

R :

Universal gas constant, 8.314 kJ/kmol K

R 0 :

Initial reaction rate, kmol/s. particle

R(t):

Reaction rate of sulfation at time t, kmol/s. particle

r :

Sorbent radius, m

S :

Sulfur mass fraction in fuel

S′:

Maximum sulfur fraction in fuel to meet regulation without capture

T :

Temperature, K

t :

Time, s

t cs(d):

Total residence time of a particle of diameter d, s

t sf :

Sulfation time, s

t p :

Pore plugging time constant, s

t fs :

Average particle residence time during single trip through the bed, s

U :

Superficial gas velocity, m/s

U s(x):

Net upward velocity of solids at height x, m/s

U s, U d :

Upward and downward velocity of solid particles near the exit of the furnace, m/s

U t :

Terminal velocity of single particle, m/s

V p :

Volume of a sorbent particle, m3

wf(d)Δd :

Mass of bed materials of size between d and d + Δd, kg

x :

Height in the furnace above the secondary air level, m

\(X_{{{\text{caco}}_{ 3} }}\) :

Weight fraction of calcium carbonate in the sorbent particle

ε :

Average bed voidage near the furnace exit

δ :

Current extent of sulfation

δ(t):

Extent of sulfation at time t

δ():

Asymptotic or maximum final extent of sulfation of the sorbent

ρ p :

Density uncalcined sorbent, kg/m3

ρ b(0):

Ρ b (x), ρ b (), density of the bed at secondary air level, distance, x above it and the asymptotic value, kg/m3

ρ bav :

Average bed density, kg/m3

References

  • Abanades, J. C. (2013). Calcium looping for CO2 capture in combustion systems. In F. Scala (Ed.) Fluidized bed technology for near-zero emission combustion and gasification (Chap. 21, pp. 931–). Cambridge: Woodhead Publishing Limited.

    Google Scholar 

  • Amand, L. E., Andersson, S. (1989). Emissions of nitrous oxide from fluidized bed boilers. In A. Manaker (Ed.), Proceedings of 10th International Conference on Fluidized Bed Combustion (pp. 49–56). New York: ASME.

    Google Scholar 

  • Anderson, S., & Newell, R. (2004). Prospects for carbon capture and storage technologies. Annual Review of Environment and Resources, 29, 109–142.

    Article  Google Scholar 

  • Andrus, H. E., Chiu, J. H., Thibeault, P. R., & Brautsch, A. (2009). Alstom’s calcium oxide chemical looping combustion coal power technology development. In 34th International Technical Conference on Clean Coal and Fuel Systems, Clearwater, Florida, May 31–June 4.

    Google Scholar 

  • Basu, P. (2013). Biomass gasification, pyrolysis and torrefaction. Practical design and theory.  In Design of biomass gasifiers, (Chap. 8, pp. 249–313). (2nd ed.). London, UK: Academic Press, Elsevier

    Google Scholar 

  • Borgwardt, R. H. (1970). Environmental Science and Technology, 4, 855.

    Article  Google Scholar 

  • Brown, R. A., & Muzio, L. (1991). N2O emissions from fluidized bed combustion. In Proceedings of 11th International Conference on Fluidized Bed Combustion (Vol. 2, pp. 719–724). New York: ASME.

    Google Scholar 

  • Burdett, N. A., Gliddon, B. J., Hotchkiss, R. S., & Squires, R. T. (1983). SO3 in coal-fired fluidized bed combustors. Journal of the Institute of Energy, 56, 119–124.

    Google Scholar 

  • Burdett, N. A., Longdon, W. E., & Squires, R. T. (1984). Rate coefficients for the reaction SO2 + O2 = SO3 + O in the temperature range 900–1350 K. Journal of the Institute of Energy, 57, 373–376.

    Google Scholar 

  • Chrostowski, J. W., & Georgakis, C. (1978). ACS Symposium Series (Vol. 65, p. 225).

    Google Scholar 

  • Cogbill, C. V., & Likens, G. E. (1974). Acid precipitation in Northeastern US. Water Resources Research, 10, 1133.

    Article  Google Scholar 

  • Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J., & Fennel, P. (2011). The calcium looping cycle for CO2 capture from power generation, cement manufacture, and hydrogen production. Chemical Engineering Research and Design, 89, 836–855.

    Article  Google Scholar 

  • deSoete, G. G. (1989). Heterogeneous NO and N 2 O formation from bound nitrogen during char combustion. A paper presented at the joint meeting of the British and French Section of Combustion Institute, Rouen, April (pp. 18–21).

    Google Scholar 

  • Ehrlich, S. (1975). A coal-fired fluidized bed boiler. In: Institute of Fuel Symposium (Series no. 1, Vol. 1, p. C4).

    Google Scholar 

  • Elliot, M. A. (1981). Chemistry of coal utilization—second supplementary volume (p. 1462). New York: Wiley.

    Google Scholar 

  • Fee, D. C., Wilson, W. I., Myles, K. M., Johnson, I., & Fan, L. S. (1983). Fluidized bed coal combustion in bed sorbent sulfation model. Chemical Engineering Science, 38(11), 1917–1925.

    Article  Google Scholar 

  • Fee, D. C., Wilson, W. I., Myles, K. M., Johnson, I., Fan, L. S., Smith, G. W., et al. (1982). Sulfur control in fluidized bed combustors: Methodology for predicting the performance of limestone and dolomite sorbents. Argonne National Laboratory. Report no ANL/FE-8-10, NTIS USA.

    Google Scholar 

  • Fields, R. B., Burdett, N. A., & Davidson, J. F. (1979). Reaction of sulfur dioxide with limestone particles: The influence of sulfur-trioxide. Transactions of the Instituition of Chemical Engineers, 57, 276–280.

    Google Scholar 

  • Freihaut, J. D., & Seery, D. J. (1981). Evolution of fuel nitrogen during the vacuum thermal devolatilization of coal. Presented at American Chemical Society Division of Fuel Chemistry, New York, August 23–28.

    Google Scholar 

  • Ghardashkhani, S., Ljungstrom, E., & Lindquist, O. (1989). Release of sulfur dioxide from calcium sulfate under reducing atmosphere. In A. Manaker (Ed.), Proceedings of 10th International Conference on Fluidized Bed Combustion (pp. 611–615). New York: ASME.

    Google Scholar 

  • Hamer, C. A. (1986). Evaluation of SO 2 sorbent utilization in fluidized beds. Canada: Energy Mines and Resources. CANMET Report 86-9E.

    Google Scholar 

  • Harada, M. (1992). Nitrous oxide emissions from FBC. Presented at 24th IEA-FBC technical meeting, Turku, Finland.

    Google Scholar 

  • Hirama, T., Takeuchi, H., & Horio, M. (1987). Nitric oxide emission form circulating fluidized bed coal combustion. In J. Mustonen (Ed.), Proceedings of 9th International Conference on Fluidized Bed Combustion (Vol. 1, pp. 898–903). New York: ASME.

    Google Scholar 

  • Howard, J. R. (1983). Fluidized beds—combustion and applications (p. 209). Barking: Applied Science.

    Google Scholar 

  • Johnsson, J. E. (1989). A kinetic model for NOx formation in fluidized bed combustion. In A. Manaker (Ed.), Proceedings of 10th International Conference on Fluidized Bed Combustion (p. 1112). New York: ASME.

    Google Scholar 

  • Keairn, D. L., & Newby, R. A. (1981). FBC sulfur control perspective on understanding, modeling and application. A Paper presented at MIT Summer Institute on Fluidized Bed Combustion, July.

    Google Scholar 

  • Kramlich, J. C., Lyon, R. R., & Lanier, W. S. (Eds.). (1988). EPA/NOAA/NASA/USDA/N2O Workshop, v1, EPA-600/8-88-079.

    Google Scholar 

  • Leckner, B., & Amand, L. E. (1987). Emission from a circulating and a stationery fluidized bed boiler a comparison. In J. Mustonen (Ed.), Proceedings of 9th International Conference on Fluidized Bed Combustion (pp. 891–897). New York: ASME.

    Google Scholar 

  • Leckner, B., & Karlsson, M. (1993). Gaseous emissions from CFB combustion of wood. Biomass and Bioenergy, 4(5), 379–389.

    Article  Google Scholar 

  • Lee, D. L., Hodges, J. L., & Georgakis, C. (1980). Modeling of SO2 emission from fluidized ed coal combustors. Chemical Engineering Science, 35, 302–306.

    Article  Google Scholar 

  • Likens, G. E., & Borman, F. H. (1974). Acid rain: A serious regional environmental problem. Science, 184, 1176–1179.

    Article  Google Scholar 

  • Lyngfelt, A. (2013). Chemical Looping combustion. In F. Scala (Ed.), Fluidized bed technology for near-zero emission combustion and gasification (Chap. 20895-930, pp. 620–639). Cambridge: Woodhead Publishing Limited.

    Google Scholar 

  • Moritomi, H., Suzuki, Y., Kido, N., & Ogisu, Y. (1990). NOX emission and reduction from circulating fluidized bed combustor. In P. Basu, M. Hasatani, & M. Horio (Eds.), Circulating fluidized bed technology III (pp. 339–404). Oxford: Pergamon Press.

    Google Scholar 

  • Morrison, G. F. (1980). Nitrogen oxides from combustion—abatement and control (p. 13). London: IEA Coal Research. Report no ICTIS/TRII.

    Google Scholar 

  • Myhre, G., D. Shindell, F.-M. Br.on, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In: T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Climate change 2013: The physical science basis (p. 714). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Oka, S., & Anthony, E. J. (2004). Fluidized bed combustion. In Harmful matter emission from FBC boilers, (Chap. 7, vol. 162, pp. 505–580). New York : CRC Press, Marcel Dekker, Inc.

    Google Scholar 

  • Ravishankar, A. V., Daniel, J. S., & Portman, R.W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century. Science, 326(5949), 123–125. doi:10.1126/science.1176985

  • Reinert, R. A., Heagle, A. S., & Heck, W. W. (1975). Plant response to pollutants combination. In J. B. Mudds, & T. T. Kozlowski (Eds.), Response of plants to air pollution (p. 383). New York: Academic Press.

    Google Scholar 

  • Sarofim A. F., & Beer, J. M. (1979). Modeling of fluidized bed combustion. In 17th Symposium (International) on Combustion (pp. 189–204). Combustion Institute.

    Google Scholar 

  • Stanton, J. E. (1983). In J. R. Howard (Ed.), Fluidized beds-combustion and applications (p. 209). London: Applied Science.

    Google Scholar 

  • Wheeldon, J. M. & Thimsen, D. (2013). Economic evaluation of circulating fluidized bed combustion power generation plants. In F. Scala (Ed.), Fluidized bed technology for near-zero emission combustion and gasification (Chap. 13, pp. 620–639). Cambridge: Woodhead Publishing Limited.

    Google Scholar 

  • Yates, J. G. (1983). Fundamentals of fluidized bed chemical processes, Butterworths (p. 188, 183, 185).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Basu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basu, P. (2015). Emissions. In: Circulating Fluidized Bed Boilers. Springer, Cham. https://doi.org/10.1007/978-3-319-06173-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06173-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06172-6

  • Online ISBN: 978-3-319-06173-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics