Skip to main content

Computational Wind-Turbine Analysis with the ALE-VMS and ST-VMS Methods

  • Chapter
  • First Online:
Numerical Simulations of Coupled Problems in Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 33))

  • 2046 Accesses

Abstract

We provide an overview of the aerodynamic and FSI analysis of wind turbines the first three authors’ teams carried out in recent years with the ALE-VMS and ST-VMS methods. The ALE-VMS method is the variational multiscale version of the Arbitrary Lagrangian–Eulerian (ALE) method. The VMS components are from the residual-based VMS (RBVMS) method. The ST-VMS method is the VMS version of the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) method. The techniques complementing these core methods include weak enforcement of the essential boundary conditions, NURBS-based isogeometric analysis, using NURBS basis functions in temporal representation of the rotor motion, mesh motion and also in remeshing, rotation representation with constant angular velocity, Kirchhoff–Love shell modeling of the rotor-blade structure, and full FSI coupling. The analysis cases include the aerodynamics of wind-turbine rotor and tower and the FSI that accounts for the deformation of the rotor blades. The specific wind turbines considered are NREL 5MW, NREL Phase VI and Micon 65/13M, all at full scale, and our analysis for NREL Phase VI and Micon 65/13M includes comparison with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jonkman JM, Buhl ML (2005) “FAST user’s guide”, Technical Report NREL/EL-500-38230. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  2. Jonkman J, Butterfield S, Musial W, Scott G (2009) “Definition of a 5-MW reference wind turbine for offshore system development”, Technical Report NREL/TP-500-38060. National Renewable Energy Laboratory, Golden, CO

    Book  Google Scholar 

  3. Sørensen NN, Michelsen JA, Schreck S (2002) Navier-Stokes predictions of the NREL Phase VI rotor in the NASA Ames 80 ft \(\times \) 120 ft wind tunnel. Wind Energy 5:151–169

    Google Scholar 

  4. Pape AL, Lecanu J (2004) 3D Navier-Stokes computations of a stall-regulated wind turbine. Wind Energy 7:309–324

    Article  Google Scholar 

  5. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Meth Fluids 65:207–235. doi:10.1002/fld.2400

    Article  MATH  Google Scholar 

  6. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344. doi:10.1007/s00466-011-0589-2

    Article  MATH  Google Scholar 

  7. Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30:2101–2114

    Article  Google Scholar 

  8. Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42:285–330

    Article  Google Scholar 

  9. Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76:52–61

    Article  Google Scholar 

  10. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    Article  MATH  Google Scholar 

  11. Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for pre-bending of wind turbine blades. Int J Numer Meth Eng 89:323–336

    Article  MATH  Google Scholar 

  12. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Meth Fluids 65:236–253

    Article  MATH  Google Scholar 

  13. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  14. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5297

    Article  MATH  MathSciNet  Google Scholar 

  15. Bazilevs Y, da Veiga LB, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math Models Methods Appl Sci 16:1031–1090

    Article  MATH  MathSciNet  Google Scholar 

  16. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Meth Appl Mech Eng 196:4160–4183

    Article  MATH  MathSciNet  Google Scholar 

  17. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  18. Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-Widths, supinfs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198:1726–1741

    Google Scholar 

  19. Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264–275

    Google Scholar 

  20. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263

    Article  MATH  MathSciNet  Google Scholar 

  21. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    Article  MATH  MathSciNet  Google Scholar 

  22. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862

    Article  MATH  MathSciNet  Google Scholar 

  23. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790

    Article  MATH  MathSciNet  Google Scholar 

  24. Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41:371–378

    Article  MATH  MathSciNet  Google Scholar 

  25. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840. doi:10.1016/j.cma.2009.06.019

    Article  MATH  MathSciNet  Google Scholar 

  26. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414

    Article  MATH  MathSciNet  Google Scholar 

  27. Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order nurbs elements. Comput Methods Appl Mech Eng 197:2732–2762

    Article  MATH  Google Scholar 

  28. Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373

    Article  MATH  Google Scholar 

  29. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Meth Eng 83:765–785

    MATH  Google Scholar 

  30. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: the Reissner-Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    Article  MATH  MathSciNet  Google Scholar 

  31. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    Article  MATH  Google Scholar 

  32. Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959

    Google Scholar 

  33. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    Article  MATH  MathSciNet  Google Scholar 

  34. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MATH  MathSciNet  Google Scholar 

  35. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178

    Article  Google Scholar 

  36. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150

    Article  MATH  MathSciNet  Google Scholar 

  37. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin shell analysis. Int J Numer Meth Eng 47:2039–2072

    Google Scholar 

  38. Cirak F, Ortiz M (2001) Fully \({c}^1\)-conforming subdivision elements for finite deformation thin shell analysis. Int J Numer Meth Eng 51:813–833

    Article  MATH  Google Scholar 

  39. Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schröder P (2002) Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput Aided Des 34:137–148

    Article  Google Scholar 

  40. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MATH  MathSciNet  Google Scholar 

  41. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  42. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799

    Article  Google Scholar 

  43. Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Comput Mech 48:247–267. doi:10.1007/s00466-011-0571-z

    Article  MATH  MathSciNet  Google Scholar 

  44. Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22:1230001. doi:10.1142/S0218202512300013

    Article  MathSciNet  Google Scholar 

  45. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi:10.1016/S0065-2156(08)70153-4

    Article  MATH  MathSciNet  Google Scholar 

  46. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MATH  MathSciNet  Google Scholar 

  47. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371. doi:10.1016/0045-7825(92)90060-W

  48. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575. doi:10.1002/fld.505

    Article  MATH  MathSciNet  Google Scholar 

  49. Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Meth Fluids 54:855–900. doi:10.1002/fld.1430

    Article  MATH  MathSciNet  Google Scholar 

  50. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, Chichester, West Sussex, United Kingdom

    Google Scholar 

  51. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26

    Article  MATH  MathSciNet  Google Scholar 

  52. Nitsche J (1971) Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Univ Hamburg 36:9–15

    Article  MATH  MathSciNet  Google Scholar 

  53. Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39:1749–1779

    Article  MATH  MathSciNet  Google Scholar 

  54. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  55. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242. doi:10.1016/0045-7825(92)90141-6

    Article  MATH  Google Scholar 

  56. Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Meth Fluids 15:1073–1118. doi:10.1002/fld.1650150911

    Article  Google Scholar 

  57. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3d incompressible flows—fluid-structure interactions. Int J Numer Meth Fluids 21:933–953. doi:10.1002/fld.1650211011

    Article  MATH  Google Scholar 

  58. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. doi:10.1016/S0045-7825(00)00204-8

    Article  MATH  Google Scholar 

  59. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. doi:10.1016/j.cma.2004.09.014

    Article  MATH  MathSciNet  Google Scholar 

  60. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Meth Eng 19:125–169. doi:10.1007/s11831-012-9070-4

    Article  MathSciNet  Google Scholar 

  61. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Meth Biomed Eng 27:1665–1710. doi:10.1002/cnm.1433

    Article  MATH  MathSciNet  Google Scholar 

  62. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Meth Eng 19:171–225. doi:10.1007/s11831-012-9071-3

    Article  MathSciNet  Google Scholar 

  63. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686. doi:10.1007/s00466-012-0760-4

    Article  MATH  MathSciNet  Google Scholar 

  64. Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854. doi:10.1007/s00466-012-0761-3

    Article  MATH  Google Scholar 

  65. Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338. doi:10.1142/S0218202513400058

    Article  MATH  MathSciNet  Google Scholar 

  66. Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364. doi:10.1007/s00466-013-0880-5

    Article  MATH  Google Scholar 

  67. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073. doi:10.1007/s00466-012-0790-y

    Article  MATH  MathSciNet  Google Scholar 

  68. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Meth Fluids 65:135–149. doi:10.1002/fld.2415

    Article  MATH  MathSciNet  Google Scholar 

  69. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384. doi:10.1007/s00466-011-0619-0

    Article  MATH  Google Scholar 

  70. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412. doi:10.1007/BF00350249

    Article  MATH  Google Scholar 

  71. Behr M, Tezduyar T (1999) The Shear-slip mesh update method. Comput Methods Appl Mech Eng 174:261–274. doi:10.1016/S0045-7825(98)00299-0

    Article  MATH  Google Scholar 

  72. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–3200. doi:10.1016/S0045-7825(00)00388-1

    Article  MATH  Google Scholar 

  73. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657. doi:10.1007/s00466-011-0614-5

    Article  MATH  Google Scholar 

  74. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models and Methods Appl Sci 22:1230002. doi:10.1142/S0218202512300025

    Article  Google Scholar 

  75. Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. doi:10.1007/s00466-013-0888-x

    Article  Google Scholar 

  76. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi:10.1115/1.4005073

    Article  Google Scholar 

  77. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760. doi:10.1007/s00466-012-0759-x

    Article  MATH  Google Scholar 

  78. Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778. doi:10.1007/s00466-012-0758-y

    Article  MATH  Google Scholar 

  79. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134. doi:10.1016/j.compfluid.2012.11.008

    Article  MathSciNet  Google Scholar 

  80. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143, ASME, New York, pp 7–24

    Google Scholar 

  81. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36. doi:10.1109/2.237441

    Article  Google Scholar 

  82. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Meth Appl Mech Eng 119:73–94. doi:10.1016/0045-7825(94)00077-8

    Article  MATH  Google Scholar 

  83. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Meth Eng 8:83–130. doi:10.1007/BF02897870

    Article  MATH  Google Scholar 

  84. Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833

    Article  MATH  MathSciNet  Google Scholar 

  85. Hsu M-C, Akkerman I, Bazilevs Y (2013) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy, published online. doi:10.1002/we.1599

    Google Scholar 

  86. Hand MM, Simms DA, Fingersh LJ, Jager DW, Cotrell JR, Schreck S, Larwood SM (2001) “Unsteady aerodynamics experiment Phase VI: wind tunnel test configurations and available data campaigns”, Technical Report NREL/TP-500-29955. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  87. Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and fsi simulation of wind turbines. Math Models and Methods Appl Sci 23:249–272

    Article  MATH  MathSciNet  Google Scholar 

  88. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Meth Appl Mech Eng 249–252:28–41

    Article  MathSciNet  Google Scholar 

  89. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Meth Appl Mech Eng 195:5743–5753. doi:10.1016/j.cma.2005.08.023

    Article  MATH  MathSciNet  Google Scholar 

  90. Jonkman J, Butterfield S, Musial W, Scott G (2009) “Definition of a 5-MW reference wind turbine for offshore system development”, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory

    Google Scholar 

  91. Spera DA (1994) Introduction to modern wind turbines. In: Spera DA (ed) Wind turbine technology: fundamental concepts of wind turbine engineering, pp 47–72 (ASME Press)

    Google Scholar 

  92. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MATH  MathSciNet  Google Scholar 

  93. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392

    Article  MathSciNet  Google Scholar 

  94. Zayas JR, Johnson WD (2008) 3X-100 blade field test, Report of the Sandia National Laboratories. Wind Energy Technology Department, Sandia

    Google Scholar 

  95. Sutherland JH, Jones PL, Neal BA (2001) The long-term inflow and structural test program. In: Proceedings of the 2001 ASME wind energy symposium, p 162

    Google Scholar 

  96. Berry D, Ashwill T (2007) Design of 9-meter carbon-fiberglass prototype blades: CX-100 and TX-100”, Report of the Sandia national laboratories, New Mexico, USA

    Google Scholar 

  97. White JR, Adams DE, Rumsey MA (2011) Modal analysis of CX-100 rotor blade and Micon 65/13 wind turbine. In: Structural dynamics and renewable energy, vol 1, Conference proceedings of the society for experimental mechanics series 10

    Google Scholar 

  98. Marinone T, LeBlanc B, Harvie J, Niezrecki C, Avitabile P (2012) Modal testing of a 9 m CX-100 turbine blade. In: Topics in experimental dynamics substructuring and wind turbine dynamics, vol 2, Conference proceedings of the society for experimental mechanics series 27

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Texas Advanced Computing Center (TACC) and the San Diego Supercomputing Center (SDSC) for providing HPC resources that have contributed to the research results reported in this article. The first author acknowledges the support of the NSF CAREER Award, the NSF Award CBET-1306869, and the Air Force Office of Scientific Research Award FA9550-12-1-0005. The ST-VMS part of the work was supported by ARO grants W911NF-09-1-0346 and W911NF-12-1-0162 (third author) and Rice–Waseda Research Agreement (second author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bazilevs, Y., Takizawa, K., Tezduyar, T.E., Hsu, MC., Kostov, N., McIntyre, S. (2014). Computational Wind-Turbine Analysis with the ALE-VMS and ST-VMS Methods. In: Idelsohn, S. (eds) Numerical Simulations of Coupled Problems in Engineering. Computational Methods in Applied Sciences, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-06136-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06136-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06135-1

  • Online ISBN: 978-3-319-06136-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics