Skip to main content

Biological Effects of Ionizing Radiation

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

The main tool in nuclear medicine is ionizing radiation; therefore, it is important for its users to be familiar with its biological effects and pathophysiological basis. Ionization is the process of ion production by ejection of electrons from atoms and molecules after exposure to high temperature, electrical discharges, or electromagnetic and nuclear radiation. Ionizing radiation is subdivided into electromagnetic radiation (X-rays and gamma rays) and particulate radiation including neutrons and charged particles (alpha and beta particles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations Environment Program (1988) Radiation: doses, effects, risks. Blackwell, Oxford, pp 65–84

    Google Scholar 

  2. Cotran RS, Kumar V, Collins T (2010) Robbins pathologic basis of disease, 8th edn. W.B. Saunders, Philadelphia

    Google Scholar 

  3. Prasad KN (1995) Handbook of radiobiology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  4. Azzam EI, de Toledo SM, Little JB (2001) Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A 98(2):473–478

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Ramesh R, Marrogi AJ, Munshi A, Abboud CN, Freeman SM (1996) In vivo analysis of the ‘bystander effect’: a cytokine cascade. Exp Hematol 24(7):829–838

    CAS  PubMed  Google Scholar 

  6. Iyer R, Lehnert BE (2000) Factors underlying the cell growth-related bystander responses to particles. Cancer Res 60:1290–1298

    CAS  PubMed  Google Scholar 

  7. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 59(5):581–596

    Article  Google Scholar 

  8. Suzuki K, Ojima M, Kodama S, Watanabe M (2003) Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22(45):6988–6993

    Article  CAS  PubMed  Google Scholar 

  9. Kendall GM (2000) Second-event theory reviewed. J Radiol Prot 20(1):79–80

    Article  CAS  PubMed  Google Scholar 

  10. Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35:95

    Article  CAS  PubMed  Google Scholar 

  11. Bolus NE (2001) Basic review of radiation biology and terminology. J Nucl Med Technol 29:67–73

    CAS  PubMed  Google Scholar 

  12. Ernest M, Freed ME, Zametkin AJ (1996) Health hazards of radiation exposure in the context of brain imaging research: special consideration for children. J Nucl Med 39:689–698

    Google Scholar 

  13. Johansson L (2003) Hormesis, an update of the present position. Eur J Nucl Med Mol Imaging 30:921–933

    Article  PubMed  Google Scholar 

  14. Feinendegen LE (2005) Low doses of ionizing radiation: relationship between biological benefit and damage induction. A synopsis. World J Nucl Med 4:21–34

    Google Scholar 

  15. Feinenegen LE (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78(925):3–7

    Article  Google Scholar 

  16. Holm I, Hall P, Wiklund K et al (1991) Cancer risk after iodine-131 therapy for hyperthyroidism. J Natl Cancer Inst 83:1072

    Article  CAS  PubMed  Google Scholar 

  17. Saenger EL, Thomas GE, Tompkins EA (1968) Incidence of leukemia following treatment of hyperthyroidism. Preliminary report of the cooperative thyrotoxicosis therapy follow-up study. JAMA 205:855

    Article  CAS  PubMed  Google Scholar 

  18. Matanoski GM (1991) Health effects of low-level radiation in shipyard workers: final report. DOE DE-AC0279 EV10095

    Google Scholar 

  19. Cameron J (1992) The good news about low-level radiation exposure: health effects of low-level radiation in shipyard workers. Health Phys Soc Newslett 20:9

    Google Scholar 

  20. Billen D (1990) Spontaneous DNA damage and its significance for the “negligible dose” controversy in radiation protection. Radiat Res 124:242

    Article  CAS  PubMed  Google Scholar 

  21. Ward JF (1987) Radiation chemical methods of cell death. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Proceedings of the 8th international congress of radiation research, vol II. Taylor and Francis, London, pp 162–168

    Google Scholar 

  22. Quingyi W (1993) DNA repair and aging in basal cell carcinoma: a molecular epidemiology study. Proc Natl Acad Sci U S A 90:1614

    Article  Google Scholar 

  23. Koshland DE, Sancar A, Hanawalt PC, Modrich P (1994) DNA repair enzymes and mechanisms. Science 266:1925–1927

    Article  CAS  PubMed  Google Scholar 

  24. Kneala GW, Sterwart AM (1976) Mantil-Haenzel analysis of Oxford data. II. Independent effects of fetal irradiation subfactors. J Natl Cancer Inst 57:1009

    Google Scholar 

  25. Committee on the Biological Effects of Ionizing Radiations (1980) The effects on population of exposure to low levels of ionizing radiation. National Academic Press, Washington DC

    Google Scholar 

  26. International Commission on Radiological Protection, Radiosensitivity and Spatial Distribution of Dose (1969) Publication no 14. Pergamon, Oxford

    Google Scholar 

  27. Dodo T (1975) Cataract. J Radiat Res Suppl 16:132

    Article  Google Scholar 

  28. Khamwan K, Krisanachinda A, Pasawang P (2010) The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosimetry 141:50–55

    Article  CAS  PubMed  Google Scholar 

  29. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, Beyer T (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46:608–613

    Google Scholar 

  30. UNSCEAR 2008 Report. Sources and effects of ionizing radiation, United Nations Scientific Committee on the effects of atomic radiation, New York, 2010

    Google Scholar 

  31. Cohen BL (1995) Test of the linear-no threshold theory of radiation carcinogenesis in the low dose rate region. Health Phys 68:157

    Article  CAS  PubMed  Google Scholar 

  32. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (1994) Annex B: adaptive responses to radiation in cells and organisms. Document A/Ac. 82/R.542, approved 11 March 1994

    Google Scholar 

  33. High Background radiation research group (1980) Health survey in high background radiation areas in China. Science 209:877–880

    Article  Google Scholar 

  34. Nambi KS, Soman SD (1987) Environmental radiation and cancer in India. Health Phys 52:653–657

    Article  CAS  PubMed  Google Scholar 

  35. Ghiassi-nejad M, Mortazavi SMJ, Cameron JR, Niroomand-Rad A, Karam PA (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82:87–93

    Article  CAS  PubMed  Google Scholar 

  36. Jagger J (1998) Natural background radiation and cancer death in Rocky Mountain states and Gulf Coast states. Health Phys 75:428–430

    Article  CAS  PubMed  Google Scholar 

  37. Cohen BJ (1995) Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon products. Health Phys 68:157–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid H. Elgazzar MD, FCAP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elgazzar, A.H., Kazem, N. (2015). Biological Effects of Ionizing Radiation. In: Elgazzar, A. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-06112-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06112-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06111-5

  • Online ISBN: 978-3-319-06112-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics