Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 574 Accesses

Abstract

Thermoresponsive water soluble polymers have attracted much attention in the last years [25].

NOESY measurements were performed in collaboration with M. Hetzer and Prof. H. Ritter (Heinrich Heine Universität Düsseldorf). Parts of this chapter were reproduced with permission from Schmidt et al. [1]. Copyright 2013 John Wiley & Sons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2013) Modulation of the thermoresponsive behavior of poly (N,N-diethylacrylamide) via cyclodextrin host/guest Interactions. Macromol Rapid Commun 34(16):1306–1311. doi:10.1002/marc.201300478

    Article  CAS  Google Scholar 

  2. Alarcon CdlH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Google Scholar 

  3. Li Y, Lokitz BS, McCormick CL (2006) Thermally responsive vesicles and their structural locking through polyelectrolyte complex formation. Angew Chem Int Ed 45:5792–5795

    Article  CAS  Google Scholar 

  4. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    Article  CAS  Google Scholar 

  5. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev. 42:7214–7243

    Google Scholar 

  6. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  7. York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60:1018–1036

    Article  CAS  Google Scholar 

  8. Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MWM, Schubert US (2008) Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)?. Chem Commun 5758–5760

    Google Scholar 

  9. Lutz J-F (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23:2237–2243

    Article  CAS  Google Scholar 

  10. Smith AE, Xu X, Kirkland-York SE, Savin DA, McCormick CL (2010) “Schizophrenic” self-assembly of block copolymers synthesized via aqueous RAFT polymerization: from micelles to vesicles. Macromolecules 43:1210–1217

    Article  CAS  Google Scholar 

  11. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  12. Glatzel S, Laschewsky A, Lutz J-F (2010) Well-defined uncharged polymers with a sharp UCST in water and in physiological milieu. Macromolecules 44:413–415

    Article  Google Scholar 

  13. Idziak I, Avoce D, Lessard D, Gravel D, Zhu XX (1999) Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules 32:1260–1263

    Article  CAS  Google Scholar 

  14. Li H, Yu B, Matsushima H, Hoyle CE, Lowe AB (2009) The thiol/Isocyanate click reaction: facile and quantitative access to end-functional poly(N,N-diethylacrylamide) synthesized by RAFT radical polymerization. Macromolecules 42:6537–6542

    Article  CAS  Google Scholar 

  15. Zhao Y, Tremblay L, Zhao Y (2011) Phototunable LCST of water-soluble polymers: exploring a topological effect. Macromolecules 44:4007–4011

    Article  CAS  Google Scholar 

  16. Duan Q, Miura Y, Narumi A, Shen X, Sato S-I, Satoh T, Kakuchi TJ (2006) Synthesis and thermoresponsive property of end-functionalized poly(N-isopropylacrylamide) with pyrenyl group. Polym Sci Part A Polym Chem 44:1117–1124

    Article  CAS  Google Scholar 

  17. Maatz G, Maciollek A, Ritter H (2012) Cyclodextrin-induced host/guest effects of classically prepared poly(NIPAM) bearing azo-dye end groups. Beilstein J Org Chem 8:1929–1935

    Google Scholar 

  18. Ritter H, Sadowski O, Tepper E (2003) Influence of cyclodextrin molecules on the synthesis and the thermoresponsive solution behavior of N-Isopropylacrylamide copolymers with adamantyl groups in the side-chains. Angew Chem Int Ed 42:3171–3173

    Article  CAS  Google Scholar 

  19. Rauwald U, Barrio Jd, Loh XJ, Scherman OA (2011) “On-demand” control of thermoresponsive properties of poly(N-isopropylacrylamide) with cucurbit[8]uril host-guest complexes. Chem Commun 47:6000–6002

    Google Scholar 

  20. Summers MJ, Phillips DJ, Gibson MI (2013) “Isothermal” LCST transitions triggered by bioreduction of single polymer end-groups. Chem Commun 49:4223–4225

    Article  CAS  Google Scholar 

  21. Jochum FD, zur Borg L, Roth PJ, Theato P (2009) Thermo- and light-responsive polymers containing photoswitchable azobenzene end groups. Macromolecules 42:7854–7862

    Google Scholar 

  22. Gan LH, Cai W, Tam KC (2001) Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur Polym J 37:1773–1778

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Volkmar Konrad Jakob Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, B.V.K.J. (2014). Modulation of the Thermoresponsitivity of PDEAAm via CD Addition. In: Novel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06077-4_7

Download citation

Publish with us

Policies and ethics