Skip to main content

Advanced Echocardiographic Technologies in Dilated Cardiomyopathy

  • Chapter
  • First Online:
Clinical Echocardiography and Other Imaging Techniques in Cardiomyopathies
  • 1271 Accesses

Abstract

Advanced echocardiographic techniques, such as 3D echocardiography, tissue Doppler imaging (TDI), and speckle-tracking strain imaging, have recently been introduced for the echocardiographic evaluation of patients with dilated cardiomyopathy (DCM) and have demonstrated significant incremental value over basic echocardiography. For instance, 3D echocardiography has shown improved accuracy for left ventricular (LV) volumes and ejection fraction assessment, which might play a substantial role in better selecting candidates for device therapy. Moreover, TDI of the mitral annulus is one of the principal methods for assessing diastolic function, provides noninvasive information on left atrial pressure, is related to exercise capacity in DCM patients, and has demonstrated prognostic value. LV dyssynchrony with speckle-tracking strain analysis was an independent determinant of response to cardiac resynchronization therapy and long-term survival in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Otterstad JE, Froeland G, St John Sutton M et al (1997) Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J 18:507–513

    Article  PubMed  CAS  Google Scholar 

  2. Gutierrez-Chico JL, Zamorano JL, Perez de Isla L et al (2005) Comparison of left ventricular volumes and ejection fractions measured by three-dimensional echocardiography versus by two-dimensional echocardiography and cardiac magnetic resonance in patients with various cardiomyopathies. Am J Cardiol 95:809–813

    Article  PubMed  Google Scholar 

  3. Shiota T, McCarthy PM, White RD et al (1999) Initial clinical experience of real-time three-dimensional echocardiography in patients with ischemic and idiopathic dilated cardiomyopathy. Am J Cardiol 84:1068–1073

    Article  PubMed  CAS  Google Scholar 

  4. Lang RM, Badano LP, Tsang W et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:1–46

    Article  PubMed  Google Scholar 

  5. Mu Y, Chen L, Tang Q et al (2010) Real time three-dimensional echocardiographic assessment of left ventricular regional systolic function and dyssynchrony in patients with dilated cardiomyopathy. Echocardiography 27:415–420

    Article  PubMed  Google Scholar 

  6. Corsi C, Lang RM, Veronesi F et al (2005) Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation 112:1161–1170

    Article  PubMed  Google Scholar 

  7. Gopal AS, Schnellbaecher MJ, Shen Z et al (1997) Freehand three-dimensional echocardiography for determination of left ventricular volume and mass in patients with abnormal ventricles: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 10:853–861

    Article  PubMed  CAS  Google Scholar 

  8. Mor-Avi V, Sugeng L, Weinert L et al (2004) Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 110:1814–1818

    Article  PubMed  Google Scholar 

  9. Shan K, Bick RJ, Poindexter BJ et al (2000) Relation of tissue Doppler derived myocardial velocities to myocardial structure and beta-adrenergic receptor density in humans. J Am Coll Cardiol 36:891–896

    Article  PubMed  CAS  Google Scholar 

  10. Mor-Avi V, Lang RM, Badano LP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12:167–205

    Article  PubMed  Google Scholar 

  11. Meluzin J, Spinarova L, Hude P et al (2009) Left ventricular mechanics in idiopathic dilated cardiomyopathy: systolic-diastolic coupling and torsion. J Am Soc Echocardiogr 22:486–493

    Article  PubMed  Google Scholar 

  12. Oki T, Tabata T, Yamada H et al (1997) Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am J Cardiol 79:921–928

    Article  PubMed  CAS  Google Scholar 

  13. Mullens W, Borowski AG, Curtin RJ et al (2009) Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation 119:62–70

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meluzin J, Spinarova L, Hude P et al (2011) Estimation of left ventricular filling pressures by speckle tracking echocardiography in patients with idiopathic dilated cardiomyopathy. Eur J Echocardiogr 12:11–18

    Article  PubMed  Google Scholar 

  15. Cameli M, Lisi M, Mondillo S et al (2010) Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure. Cardiovasc Ultrasound 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Delgado V, Bax JJ (2011) Assessment of systolic dyssynchrony for cardiac resynchronization therapy is clinically useful. Circulation 123:640–655

    Article  PubMed  Google Scholar 

  17. Gorcsan J 3rd, Abraham T, Agler DA et al (2008) Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting–a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr 21:191–213

    Article  PubMed  Google Scholar 

  18. Szulik M, Tillekaerts M, Vangeel V et al (2010) Assessment of apical rocking: a new, integrative approach for selection of candidates for cardiac resynchronization therapy. Eur J Echocardiogr 11:863–869

    Article  PubMed  Google Scholar 

  19. Bax JJ, Bleeker GB, Marwick TH et al (2004) Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 44:1834–1840

    Article  PubMed  Google Scholar 

  20. Chung ES, Leon AR, Tavazzi L et al (2008) Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 117:2608–2616

    Article  PubMed  Google Scholar 

  21. Delgado V, Ypenburg C, van Bommel RJ et al (2008) Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol 51:1944–1952

    Article  PubMed  Google Scholar 

  22. Mele D, Agricola E, Galderisi M et al (2009) Real-time three-dimensional echocardiography: current applications, advantages and limits for the evaluation of the left ventricle. G Ital Cardiol (Rome) 10:516–532

    Google Scholar 

  23. Faletra FF, Conca C, Klersy C et al (2009) Comparison of eight echocardiographic methods for determining the prevalence of mechanical dyssynchrony and site of latest mechanical contraction in patients scheduled for cardiac resynchronization therapy. Am J Cardiol 103:1746–1752

    Article  PubMed  Google Scholar 

  24. Tanaka H, Nesser HJ, Buck T et al (2010) Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the Speckle Tracking and Resynchronization (STAR) study. Eur Heart J 31:1690–1700

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marsan NA, Bleeker GB, Ypenburg C et al (2008) Real-time three-dimensional echocardiography permits quantification of left ventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol 19:392–399

    Article  PubMed  Google Scholar 

  26. Tanaka H, Hara H, Saba S et al (2010) Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am J Cardiol 105:235–242

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ypenburg C, van Bommel RJ, Delgado V et al (2008) Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J Am Coll Cardiol 52:1402–1409

    Article  PubMed  Google Scholar 

  28. Van de Veire NR, Yu CM, Ajmone-Marsan N et al (2008) Triplane tissue Doppler imaging: a novel three-dimensional imaging modality that predicts reverse left ventricular remodelling after cardiac resynchronisation therapy. Heart 94:e9

    Article  PubMed  Google Scholar 

  29. D’Andrea A, Caso P, Scarafile R et al (2009) Effects of global longitudinal strain and total scar burden on response to cardiac resynchronization therapy in patients with ischaemic dilated cardiomyopathy. Eur J Heart Fail 11:58–67

    Article  PubMed  Google Scholar 

  30. Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637

    Article  PubMed  Google Scholar 

  31. Sugeng L, Spencer KT, Mor-Avi V et al (2003) Dynamic three-dimensional color flow Doppler: an improved technique for the assessment of mitral regurgitation. Echocardiography 20:265–273

    Article  PubMed  Google Scholar 

  32. Fujimoto S, Mizuno R, Nakagawa Y et al (1999) Ultrasonic tissue characterization in patients with dilated cardiomyopathy: comparison with findings from right ventricular endomyocardial biopsy. Int J Card Imaging 15:391–396

    Article  PubMed  CAS  Google Scholar 

  33. Dagdeviren B, Akdemir O, Eren M et al (2002) Prognostic implication of myocardial texture analysis in idiopathic dilated cardiomyopathy. Eur J Heart Fail 4:41–48

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Abate MD .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Clip 6.1

(MP4 1096 kb)

Clip 6.2a

(MP4 1294 kb)

Clip 6.2b

(MP4 1302 kb)

Clip 6.2c

(MP4 910 kb)

(MOV 1060 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abate, E., Pinamonti, B. (2014). Advanced Echocardiographic Technologies in Dilated Cardiomyopathy. In: Pinamonti, B., Sinagra, G. (eds) Clinical Echocardiography and Other Imaging Techniques in Cardiomyopathies. Springer, Cham. https://doi.org/10.1007/978-3-319-06019-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06019-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06018-7

  • Online ISBN: 978-3-319-06019-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics