Skip to main content

Diversity of Cold Tolerant Phosphate Solubilizing Microorganisms from North Western Himalayas

  • Chapter
  • First Online:
Bacterial Diversity in Sustainable Agriculture

Abstract

The environmental conditions on planet earth are extremely diverse, with enormous variations in pressure, pH, temperature and salt concentration. All these environments are inhabited by living organisms, particularly microorganisms which have adapted to the different extremes of environments. Among various extreme environments, low temperature is very common both in natural and man-made environments. Microorganisms play a significant role for maintaining the ecological balance in any ecosystem. During the long journey of evolution, they have undergone changes at different levels for adaptation and thus show huge genetic diversity for exploration. Extremely low temperature environments are generally inhabited by the cold adapted microorganisms which have the ability to grow and survive under harsh conditions. These cold adapted microorganisms, known as cold loving (psychrophiles) and cold tolerant (psychrotrophs).

The North Western Himalayan region that extends over the states of Jammu Kashmir, Himachal Pradesh and Uttarakhand in India presents a virgin opportunity for exploration and characterization of psychrophilic and psychrotolerant microorganisms, due to the unique ecological niche of the region that includes glaciers, alpine and sub alpine regions. Soil of such regions is mountaineous that is deficient in various materials. Phosphorus is second to nitrogen as a mineral nutrient required by plants and microorganisms, its major physiological role being in certain essential steps, the accumulation and release of energy during cellular metabolism. Phosphorus is an essential nutrient for plants, lack of which limits plant growth. It is least soluble in the soil. This chapter deals with the diversity of cold tolerant P solubilizing microorganisms from North Western Himalayas and their effect on plants with special reference to that of management of phosphorous by using cold tolerant PGPRs in improving soil quality and productivity of agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol Fertil Soils 18:216–218

    CAS  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Afzal A, Ashraf M, Asad SA, Farooq M (2005) Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat [Triticum aestivum L.] in rainfed area. Int J Agric Biol 7:207–209

    Google Scholar 

  • Agasimani CA, Mudalagiriyappa MV, Sreenivasa MH (1994) Response of groundnut to phosphate solubilizing microorganisms. Groundnut News 6:5–7

    Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Biological importance of phosphorous and phosphate solublizing microorganisms-An overview. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova, New York, pp 1–14

    Google Scholar 

  • Akintokun AK, Akande GA, Akintokun PO, Popoola TOS, Babalola AO (2007) Solubilization of insoluble phosphate by organic acid producing fungi isolated from Nigerian soil. Int J Soil Sci 2:301–307

    CAS  Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phospate-solubilizing bacteria on yield of Sorghum bicolor (L. Moench) in dry land. Trop Agric 69:347–350

    Google Scholar 

  • Ali ME, Massoud AM, El-Xhander IAI (1989) Effect of different isolates of PSB on soil pH and available soil P. In: Proceedings of the conference agricultural development and research, Ain Shams University, Cairo, Egypt

    Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum rifai. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amellal N, Bartoli F, Villemin G, Talouizte A, Heulin T (1999) Effects of inoculation of EPS-producing Pantoea agglomeranson wheat rhizosphere aggregation. Plant Soil 211:93–101

    CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as growth promoting bacteria on non-legumes; effect on radishes [Raphanus sativus L. ]. Plant Soil 204:57–67

    CAS  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and in soil. Soil Biol Biochem 20:459–464

    CAS  Google Scholar 

  • Babu-Khan S, Yeo CT, Martin WL, Duron MR, Rogers RD, Goldstein A (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banik S, Dey BK (1981) Solubilization of inorganic phosphate and production of organic acids by microorganisms isolated in sucrose tricalcium phosphate agar plates. Zbl Bakteriol 136:478–486

    CAS  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil 69:353–364

    CAS  Google Scholar 

  • Bano N, Musarrat J (2004) Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol Lett 231:13–17

    CAS  PubMed  Google Scholar 

  • Bardiya MC, Gaur AC (1974) Isolation and screening of microorganisms dissolving low grade rock phosphate. Folia Microbiol 19:386–389

    CAS  Google Scholar 

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulation by rhizosphere phosphate solubilizing bacteria. J Appl Bacteriol 40:129–134

    CAS  PubMed  Google Scholar 

  • Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Bio Metals 14:33–42

    CAS  Google Scholar 

  • Bar-Yosef B, Rogers RD, Wolfram JH, Richman E (1999) Pseudomonas cepacia mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci Soc Am J 63:1703–1708

    CAS  Google Scholar 

  • Belimov AA, Kunakova AM, Vasilyeva ND, Gruzdeva EV, Vorobiev NI, Kojemiakov AP, Khamova OF, Postavskaya SM, Sokova SA (1995) Relationship between survival rates of associative nitrogen-fixers on roots and yield response of plants to inoculation. FEMS Microbiol Ecol 17:187–196

    CAS  Google Scholar 

  • Bhargava T, Datta S, Ramachandran V, Ramakrishnan R, Roy RK, Sankaran K, Subrahmanyam YVBK (1995) Virulent Shigella codes for a soluble apyrase: identification, characterization and cloning of the gene. Curr Sci 68:293–300

    CAS  Google Scholar 

  • Bhattacharya P, Ghosh TK, Jain RK (1998) Evaluation of native phosphate solubilizing microorganisms from Vidarbha soils. J Maharastra Agric Univ Pub 22:252–253

    Google Scholar 

  • Burgstaller W, Straser H, Shiner F (1992) Solubilization of zinc oxide from filter dust with Penicillium simplicissium: bioreactor, leaching and stoichiometry. Environ Sci Technol 26:340–346

    CAS  Google Scholar 

  • Burini JF, Gügi B, Merieau A, Janine FGM (1994) Lipase and acidic phosphatase from the psychrotrophic bacterium Pseudomonas fluorescens: Two enzymes whose synthesis is regulated by the growth temperature. FEMS Microbiol Lett 122:13–8

    CAS  PubMed  Google Scholar 

  • Burns RG (1983) Extracellular enzyme-substrate interactions in soil. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in their natural environment. Cambridge University Press, Cambridge, pp 249–298

    Google Scholar 

  • Burns DM, Beacham IR (1986) Nucleotide sequence and transcriptional analysis of the Escherichia coli ushA gene, encoding periplasmic UDP-sugar hydrolase [59-nucleotidase]: regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res 14:4325–4342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuck S (2005) Effect of an arbuscular mycorrhizal fungus, G. mosseae and a rock-phosphate-solubilizing fungus, P. thomii in Mentha piperita growth in a soiless medium. J Basic Microbiol 45:182–189

    PubMed  Google Scholar 

  • Cattelan AJ, Hartel PG, Furhmann FF (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    CAS  Google Scholar 

  • Chablain PA, Philippe G, Groboillot A, Truffant N, Guespin-Michel JF (1997) Isolation of a soil psychrotrophic toluene degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res Microbiol 148:153–161

    CAS  PubMed  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar phaseoli. Plant and Soil 184:311–321

    CAS  Google Scholar 

  • Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar Phaseoli. Soil Biol Biochem 30:1615–1618

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. App Soil Ecol 34:33–41

    Google Scholar 

  • Chhonkar PK, Subba Rao NS (1967) Phosphate solubilization by fungi associated with legume root nodules. Can J Microbiol 13:743–753

    Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    CAS  Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaji. Appl Environ Microbiol 58:1451–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    PubMed Central  PubMed  Google Scholar 

  • D’Souza-Ault MR, Smith LT, Smith GM (1993) Role of N-acetylglutamine amide and glycinebetaine in adaption of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 59:473–478

    PubMed Central  PubMed  Google Scholar 

  • Dadarwal LR, Yadav LS, Sindhu SS (1998) Bio-fertilizer production technology: prospects In. Biotechnological approaches: In. Soil microorganisms for sustainable crop production. pp 323–337. Scientific publisher, Jodhpur, India (C.F. Proceeding of training course on Bio-organic farming systems for sustainable Agriculture. July, 1997, Cairo, Egypt)

    Google Scholar 

  • Das K, Katiyar V, Goel R (2003) P solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362

    PubMed  Google Scholar 

  • Datta M, Banik S, Gupta RK (1982) Studies on the efficacy of a phytohormone producing, phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:365–373

    CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309

    CAS  PubMed  Google Scholar 

  • Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    CAS  Google Scholar 

  • Deubel A, Gransee A, Merbach W (2002) Effect of Long -term different fertilization on phosphorous dynamics in a long term trial in Halle (saale). Arch Acker PfI-Bau Bodenkde 48:543–551

    CAS  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Dubey SK (1997) Coinoculation of phosphate solubilizing bacteria with Bradyrhizobium japonicum to increase phosphate availability to rainfed soybean on vertisol. J Indian Soc Soil Sci 45:506–509

    Google Scholar 

  • Dubey SK (1998) Response of soybean to biofertilizer with and without nitrogen, phosphorous and potassium on swell shrink soil. Indian J Agron 43:546–549

    Google Scholar 

  • Duff RB, Webley DM (1959) 2-Ketogluconic acid as a natural chelator produced by soil bacteria. Chem Ind 1959:1376–1377

    Google Scholar 

  • Dye C (1995) Effect of citrate and tartrate on phosphate absorption by amorphous ferric hydroxide. Fertil Res 40:129–134

    Google Scholar 

  • Ehrlich HL (1990) Mikrobiologische und biochemische Verfahrenstechnik. In: Einsele A, Finn RK, Samhaber W (ed) Geomicrobiology, 2nd edn. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • El Komy HMA (2005) Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Tech Biotechnol 43:19–27

    Google Scholar 

  • Elizabeth P, Miguel S, Ball MM, Andrés YL (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    CAS  PubMed  Google Scholar 

  • Fenice M, Selbman L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162

    CAS  Google Scholar 

  • Fox TR, Comerford NB (1992) Rhizosphere phosphatase activity and phosphatase hydrolysable organic phosphorus in two forested spodosols. Soil Biol Biochem 24:579–583

    CAS  Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria biocolor and Douglas fir. Appl Environ Microbiol 63:139–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaind S, Gaur AC (1991) Thermotolerant phosphate solubilizing microorganisms and their interaction with mungbean. Plant Soil 133:141–149

    CAS  Google Scholar 

  • Gaind S, Gaur AC (1999) Microbial phosphate solubilization as influenced by sodium chloride. Indian J Exp Biol 37:209–210

    CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Garcia C, Fernandez T, Costa F, Cerranti B, Masciandaro G (1992) Kinetics of phosphatase activity in organic wastes. Soil Biol Biochem 25:361–365

    Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as bio-fertilizers. Omega, New Delhi

    Google Scholar 

  • Gaur R, Shani N, Kawaljeet Johri BN, Rossi P, Aragno M (2004) Diacetyl phloroglucinol-producing Pseudomonas do not influence AM fungi in wheat rhizosphere. Curr Sci 86:453–457

    CAS  Google Scholar 

  • Geelhoed JS, van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390

    CAS  Google Scholar 

  • Goenadi DH, Siswanto R, Sugiarto Y (2000) Bioactivation of poorly soluble phosphate rock with phosphorus solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms, cellular and molecular biology. Washington, DC: ASM Press, pp 197–203

    Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biol Agric Hortic 12:185–193

    Google Scholar 

  • Goldstein AH (2001) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. IFA technical conference, New Orleans, USA

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biol Technol 5:72–74

    CAS  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993). Mining by microbe. Biol Technol 11:1250–1254

    CAS  Google Scholar 

  • Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300

    CAS  PubMed  Google Scholar 

  • Goldstein AH, Lester T, Brown J (2003) Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochim Biophys Acta 1647:266–271

    CAS  PubMed  Google Scholar 

  • Goosen N, Horsman HP, Huinen RG, van dePutte P (1989) Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol 171:447–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greaves MP, Webley DM (1965) A study of the breakdown of organic phosphates by microorganisms from the root region of certain pasture grasses. J Appl Bacteriol 28:454–465

    CAS  PubMed  Google Scholar 

  • Greenland D, Losleben M (2001) Structure and function of an alpine ecosystem In: Bowman WD Seastedt TR (eds) Climate. Oxford University Press, Niwot Ridge, pp 15–31

    Google Scholar 

  • Greiner R, Haller E, Konietzny U, Jany KD (1997) Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys 341:201–206

    CAS  PubMed  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    PubMed Central  PubMed  Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent Pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of himalayas. Curr Microbiol 56:73–79

    CAS  PubMed  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    CAS  PubMed  Google Scholar 

  • Gupta R, Singhal R, Shankar A, Kuhad RC, Saxena, RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    CAS  Google Scholar 

  • Gupta RP, Vyas MK, Pandher MS (1998) Role of phosphorus solubilizing microorganisms in P-economy and crop yield. In: Kaushik BD (ed) Soil-plant-microbe interaction in relation to nutrient management. Venus, New Delhi, pp 95–101

    Google Scholar 

  • Gyaneshwar P, Kumar Naresh G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Halder AK, Chakrabartty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    CAS  Google Scholar 

  • Halvorson HO, Kenyan A, Korenberg HL (1990) Utilization of calcium phosphates for microbial growth at alkaline pH. Soil Biol Biochem 22:887–890

    CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate solubilizing bacteria isolated from compost and macrofauna. Microbiol Res 163:234–242

    CAS  PubMed  Google Scholar 

  • Hayman DS (1975) Soil microbiology. Butterworths, London

    Google Scholar 

  • He ZL, Bian W, Zhu J (2002) Screening and identification of microorganism capable of utilizing phosphate adsorbed by goethite. Soil Sci Plant Anal 33:647–663

    CAS  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonné N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borris R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth promoting effects. Microbiology 148:2097–2109

    CAS  PubMed  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    CAS  Google Scholar 

  • Illmer PA, Barbato A, Schinner F (1995) Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:260–270

    Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting entophytic bacterium achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188

    CAS  PubMed  Google Scholar 

  • Jisha MS (1997) Optimization of factors for efficient solubilization of mineral phosphates. Ph. D. Thesis, P.G. School, IARI, New Delhi

    Google Scholar 

  • Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt pH and temperature tolerant phosphate solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93

    CAS  PubMed  Google Scholar 

  • Joseph S, Jisha MS (2009) Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J Agric Sci 5:135–137

    CAS  Google Scholar 

  • Kang SC, Ha GC, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil inhabiting fungus Fomitopsis sp. Ps 102. Curr Sci 79(5):439–442

    Google Scholar 

  • Karner M, DeLong EF, Karl D (2001) Archaeal dominance in mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    CAS  PubMed  Google Scholar 

  • Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168

    CAS  PubMed  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture-A review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilising fungi-current perspective. Arch Agron Soil Sci 56:73–98

    Google Scholar 

  • Kier LD, Weppelman R, Ames B (1977) Resolution and purification of three phosphatases of Salmonella typhimurium. J Bacteriol 130:411–419

    PubMed Central  PubMed  Google Scholar 

  • Kier LD, Weppelman R, Ames BN (1979) Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol 138:155–161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KY, Jordan D, Kirshanan HB (1997) Rahnella aquatilis, a bacterium isolated from soyabean rhizophere, can solubilize hydroxyapatite. FEMS Micobiol Lett 153:273–277

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomereans, phosphate solubilizing bacteria and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Kim KY, Hwangbo H, Kim YW, Kim HJ, Park KH, Kim YC, Seoung KY (2002) Organic acid production and phosphate solubilization by Enterobacter intermedium 60 − 2G. Korean J Soil Sci Fertil 35:59 − 67

    Google Scholar 

  • Kim CH, Han SH, Kim K, Cho BH, Kim YH, Koo BS, Kim YC (2003) Cloning and Expression of Pyrroloquinoline Quinone (PQQ) Genes from a Phosphate-Solubilizing Bacterium Enterobacter intermedium. Curr Microbiol 47:457–461

    CAS  PubMed  Google Scholar 

  • Kim YH, Bae B, Choung YK (2005) Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. J Biosci Bioeng 99:23–29

    CAS  PubMed  Google Scholar 

  • Kirchner MJ, Wollum AG, King LD (1993) Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Sci Soc Am J 57:1289–1295

    CAS  Google Scholar 

  • Kole SC, Hajra JN (1997) Isolation and evaluation of tricalcium and rock phosphate solubilizing microorganisms from acidic terai and lateritic soils of West Bengal. J Interacademicia 1:126–128

    Google Scholar 

  • Kole SC, Hajra JN (1998) Occurrence and acidity of tricalcium phosphate and rock phosphate solubilizing microorganisms in mechanical compost plants of Calcutta and an alluvial soil of West Bengal. Environ Ecol 16:344–349

    Google Scholar 

  • Kostov O, Lynch LM (1998) Composted sawdust as a carrier for Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation. World J Microbiol Biotechnol 14:389–397

    Google Scholar 

  • Kpomblekou A, Tabatabai MA (1994) Effect of organic acids on the release of phosphorus from phosphate rocks. Soil Sci 158:442–448

    Google Scholar 

  • Kremer RJ (1994) Determination of soil phosphatase activity using a microplate method. Soil Sci Plant Anal 25:319–325

    CAS  Google Scholar 

  • Krishanaraj PU (1996) Genetic characterization of mineral phosphate solubilization in Pseudomonas sp. Ph. D. thesis, IARI, New Delhi

    Google Scholar 

  • Kucey RMN (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    CAS  Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium bilaii on the solubility and uptake of micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    CAS  Google Scholar 

  • Kucey RMN, Jenzen HH, Leggett ME (1989) Microbially mediated increases in plant available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Kucharski J, Ciecko Z, Niewolak T, Niklewska-Larska T (1996) Activity of microrganisms in soils of different agricultural usefulness complexes fertilized with mineral nitrogen. Acta Acad Agric Technicae-Olstenensis 62:25–35

    Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28:301–305

    CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere of wheat and their effect on the wheat cultivars under green house conditions. Microbiol Res 156:87–93

    CAS  PubMed  Google Scholar 

  • Kumar J, Negi YK, Garg SK (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156

    Google Scholar 

  • Kumari A, Kapoor KK, Kundu BS, Mehta RK (2008) Identification of organic acids producedduring rice straw decomposition and their role in rock phosphate solubilisation. Plant Soil Environ 54:72–77

    CAS  Google Scholar 

  • Kundu BS, Gaur AC (1980) Establishment of nitrogen and phosphate solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant Soil 57:223–230

    CAS  Google Scholar 

  • Kundu BS, Gaur AC (1984) Rice response to inoculation with nitrogen fixing bacteria and PSM. Plant Soil 78:227–234

    Google Scholar 

  • Leyval C, Berthelin J (1989) Interaction between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe movilization from minerals and plant growth. Plant Soil 117:103–110

    CAS  Google Scholar 

  • Lifschitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipling EM, Zaleska T (1987) Growth promotion of canola [rape seed] seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Google Scholar 

  • Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresour Technol 97:957–960

    CAS  PubMed  Google Scholar 

  • Linu MS, Stephen J, Jisha MS (2009) Phosphate Solubilizing Gluconacetobacter sp., Burkholderia sp. and their Potential Interaction with Cowpea (Vigna unguiculata (L.) Walp.). Int J Agric Res 4:79–87

    CAS  Google Scholar 

  • Liu TS, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacCormack WP, Fraile ER (1997) Characterization of hydrocarbon degrading psychotropic Antarctic bacterium. Antarct Sci 9:150–155

    Google Scholar 

  • Machi S (2006) Biofertilizer manual, Japan Atomic Industrial Forum (JAIF), Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. ISBN4-88911-301-0 C0550

    Google Scholar 

  • Madhaiyan M, Saravanan VS, Jovi DB, Lee H, Thenmozhi R, Hari K, Sa T (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats. Indian Microbiol Res 159:233–243

    CAS  Google Scholar 

  • Maheshkumar KS (1997) Studies on microbial diversity and their activity in soil under bamboo plantations. M.Sc. thesis, UAS, Dharwad

    Google Scholar 

  • Mahesh Kumar KS, Krishnaraj PU, Algawadi AR (1999) Mineral phosphate solubilizing activity of Acetobacter diazotrophicus: A bacterium associated with sugarcane. Curr Sci 76:874–875

    Google Scholar 

  • Maheshwari DK, Agarwal M, Dheeman S, Saraf M (2013) Potential of rhizobia in productivity enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. cultivated in the Western Himalaya. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity, Springer, Berlin, pp 127–165

    Google Scholar 

  • Maliha R, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in-vitro conditions. Pak J Biol Sci 7:187–196

    Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sluge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    CAS  PubMed  Google Scholar 

  • McGrath JW, Hammerschmidt F, Quinn JP (1998) Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64:356–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehrvaz S, Chaichi MR, Alikhani HA (2008) Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barley [Hordeum vulgare L.]. American-Eurasian J Agric Environ Sci 3:822–828

    Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate solubilizing bacteria. Curr Microbiol 43:51–56

    CAS  PubMed  Google Scholar 

  • Meulenberg JJM, Sellink E, Riegman NH, Postma PW (1992) Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet 232:284–294

    CAS  PubMed  Google Scholar 

  • Miller SI, Kukral AM, Mekalanos JJ (1989) A two-component regulatory system (phoP-phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86:5054–5058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra MM (1985) Solubilization of insoluble inorganic phosphate by soil microorganisms—A review. Agric Rev 6:23

    Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas. sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    CAS  PubMed  Google Scholar 

  • Monib M, Zahra MK, El-Al A, Heggo A (1984) Role of silicate bacteria in releasing K and Si from biolite and orthoclase. Soil Bioconserv Biosphere 2:733–743

    Google Scholar 

  • Monod SPI, Gupta DN, Chavan AS (1989) Enhancement of phosphate availability and phosphorus uptake in rice by phosphate solubilizing culture. J Maharastra Agric Uni 14: 178–181

    Google Scholar 

  • Musarrat J, Bano N, Rao RAK (2000) Isolation and characterization of 2,4-dichlorophenoxyacetic acid-catabolyzing bacteria and their biodegradation efficiency in soil. World J Microbiol Biotechnol 16:495–497

    CAS  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572

    CAS  PubMed  Google Scholar 

  • Nair SK, Rao NSS (1977) Distribution and activities of phosphate solubilizing microorganisms in the rhizosphere of coconut and cacao under mixed cropping. Plant Crops 5:67–70

    CAS  Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230–243

    PubMed Central  PubMed  Google Scholar 

  • Narula N, Kumar V, Behl RK, Deubel A, Gransee A, Merbach W (2000) Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. J Plant Nutr Soil Sci 163:393–398

    CAS  Google Scholar 

  • Nautiyal CS, Dion P (1990) Characterization of the opine-utilizing microflora associated with samples of soil and plants. Appl Environ Microbiol 56:2576–2579

    PubMed Central  PubMed  Google Scholar 

  • Nautiyal CS, Bhaduria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    CAS  PubMed  Google Scholar 

  • Ohtake H, Wu H, Imazu K, Ambe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. A Res Conserv Recycl 18:125–134

    Google Scholar 

  • Pal SS (1998) Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    CAS  Google Scholar 

  • Pal SS (2000) Management of soil microbial population and crop yield with indigenous phosphate solubilizing bacterial culture in Garhwal Himalaya. J Indian Soc Soil Sci 48:184–188

    Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2000) Enhancement of phosphate solubilization and siderophore production by Tn5 mutagenesis of a biocontrol rhizobacterium Pseudomonas spp. Em 85. J Microb World 2:9–15

    Google Scholar 

  • Pandey A, Sharma E, Palni L (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 3:379–384

    Google Scholar 

  • Pandey A, Palni LMS, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate-solubilizing and antagonistic strain of Pseudomonas putida [B0] isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    CAS  PubMed  Google Scholar 

  • Pandey A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 24:97–102

    CAS  Google Scholar 

  • Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performance liquid chromatography [HPLC] of the solubilization of phosphorus in iron ore by a fungus. J Ind Microbiol Biotechnol 5:183–189

    CAS  Google Scholar 

  • Perez E, Sulbaran M, Ball MM, Yarzabal LA (2007) Isolation and characterization of mineral phosphate solubilizing bacteria naturally colonizing a limonitic crust in the south eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez BC, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barely by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Peix A, Rivas R, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C, Velázquez E (2003) Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 53:2067–2072

    CAS  PubMed  Google Scholar 

  • Peix A, Rivas R, Santa-Regina I, Mateos PF, Martinez-Molina E, Rodríguez BC, Velazquez E (2004) Pseudomonas lutea sp. nov., a novel a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850

    CAS  PubMed  Google Scholar 

  • Piccini D, Azcon R (1987) Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rockphosphate by alfalfa plants using a sand vermiculite medium. Plant Soil 50:45–50

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Netherlands, pp 195–230

    Google Scholar 

  • Pradel E, Boquet PL (1988) Acid phosphatases of Escherichia coli: molecular cloning and analysis of agp, the structural gene for a periplasmic acid glucose phosphatase. J Bacteriol 170:4916–4923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Prerna A, Kapoor KK, Akhaury P (1997) Solubilization of insoluble phosphate by fungi isolated from compost and soil. Environ Ecol 15:524–527

    Google Scholar 

  • Rajarathinam K, Balamurugan T, Kulasekarapandian R, Veerasami S, Jayabalan M (1995) Isolation and screening of phosphate solubilizers from soil of Kamarajar district [Tamil Nadu]. J Ecotoxicol Environ Monit 5:155–157

    Google Scholar 

  • Ratti N, Kumar S, Verma HN, Gautam SP (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopogon martini var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol Res 156:145–149

    CAS  PubMed  Google Scholar 

  • Ray J, Bagyaraj DJ, Manjunath A (1981) Influence of soil inoculation with versicular arbuscular mycorrhizal (VAM) and a phosphate dissolving bacteria on plant growth and 32P uptake. Soil Biol Biochem 13:105–108

    Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour Technol 84:187–189

    CAS  PubMed  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV induced mutants. FEMS Micobiol Ecol 28:281–290

    CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    CAS  Google Scholar 

  • Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strain of Penicillium rugulosum. Microb Ecol 44:39–48

    CAS  PubMed  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems, Victoria. CSIRO, Australia, pp 50–62

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aus J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    CAS  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001a) Utilization of phosphorus by pasture plants supplied with myo-inositol hexa phosphate is enhanced by the presence of soil micro-organisms. Plant and Soil 229:47–56

    CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001b) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    CAS  Google Scholar 

  • Rinu K, Pandey A (2010a) Slow and steady phosphate solubilization by a psychrotolerant strain of Paecilomyces hepiali (MTCC 9621). World J Microbiol Biotechnol 27(5):1055–1062

    Google Scholar 

  • Rinu K, Pandey A (2010b) Temperature dependent phosphate solubilization by cold and pH tolerant species of Aspergillus isolated from Himalayan soil. Mycoscience 51:263–271

    CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Rodríguez H, Gonzalez T, Selman G (2000b) Expression of a mineral phosphate solubilizing gene from Erwinia herbicolain two rhizobacterial strains. J Biotechnol 84:155–161

    Google Scholar 

  • Rodríguez H, Rossolini GM, Gonzalez T, Li J, Gli BR (2000a) Isolation of a Gene from Burkholderia cepaciaIS-16 Encoding a Protein That Facilitates Phosphatase Activity. Curr Microbiol 40(6):362–366

    Google Scholar 

  • Rodríguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturewissenschaften 91:552–555

    Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Google Scholar 

  • Rosado AS, De Azevedo FS, da Croz DW, Van Elas JD, Seldin L (1998) Phenotypic and genetic diversity of Paenibacillus azatofeixans strains isolated from the rhizophere soil of different grasses. J Appl Microbiol 84:216–226

    Google Scholar 

  • Rosenberg H (1987) Phosphate transport in prokaryotes. In: Rosen B, Silver S (eds) Ion transport in prokaryotes. Academic, San Diego, pp 205–248

    Google Scholar 

  • Rossolini GM, Thaller MC, Pezzi R, Satta G (1994) Identification of Escherichia coli periplasmic acid phosphatases containing a 27 kDa-polypeptide component. FEMS Microbiol Lett 118:167–174

    CAS  PubMed  Google Scholar 

  • Rossolini GM, Shipa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial non-specific acid phosphatases: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850

    CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaise E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Physiol Plant Mol Biol 52:527–560

    CAS  Google Scholar 

  • Salih HM, Yahya AI, Abdul AR, Munam BH (1989) Availiblity of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphorus dissolving fungi. Plant Soil 120:181–185

    CAS  Google Scholar 

  • Sarapatka B, Kraskova M (1997) Interactions between phosphatase activity and soil characteristics from some locations in the Czech Republic. Rostlinna-Vyroba-UZPI 43:415–419

    CAS  Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J App Microbiol 109:1–12

    CAS  Google Scholar 

  • Sattar MA, Gaur AC (1985) Characterization of phosphate dissolving microorganisms isolated from some Bangladesh soil samples. Bangladesh J Microbiol 2:22–28

    Google Scholar 

  • Sawyer J, Creswell J (2000) Integrated crop management. Phosphorus basics. Iowa State University, Ames, pp 182–183

    Google Scholar 

  • Sayer JA, Gadd GM (1998) Solubilization and precipitation of metals by fungi. Minerol Soc Bull No. 120

    Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Gupta AD, Nazim S, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1 A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett App Microbiol 46:171–175

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009a) Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59:432–438

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009b) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009c) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137

    Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50:50–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Gopal K, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    CAS  Google Scholar 

  • Sharma HC, Gowda CLL, Stevenson PC, Ridsdill-Smith TJ, Clement SL, Rao GVR, Romies J, Miles M, El Bouhssini M (2007) Host plant resistance and insect pest management. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Oxfordshire, pp 520–537

    Google Scholar 

  • Shin W, Ryu J, Kim Y, Yang J, Madhaiyan M, Sa T (2006) Phosphate solubilization and growth promotion of maize [Zea mays L.] by the rhizosphere soil fungus Penicillium oxalicum. 18th World Congress of Soil Science. July 9–15, Philadelphia, Pennsylvania, USA

    Google Scholar 

  • Sindhu SS, Verma MK, Mor S (2009) Molecular genetics of phosphate solubilization in rhizosphere bacteria and its role in plant growth promotion. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes and crop productivity. Nova, USA, pp 199–228

    Google Scholar 

  • Singal R, Gupta R, Saxena RK (1994) Rock phosphate solubilization under alkaline conditions by Aspergillus japonicus and A. Foetidus. Folia Microbiol 39:33–36

    Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate solubilizing microorganisms and a vesicular arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28:139–144

    CAS  Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alpha-glycerphosphate. Arch Biochem Biophys 349:27–35

    Google Scholar 

  • Son TTN, Diep CN, Giang, TTM (2006) Effect of Bradyrhizobia and phosphate solubilizing bacteria application on soybean in rotational system in the mekong delta. Omonrice 14:48–57

    Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    PubMed Central  PubMed  Google Scholar 

  • Srivastav S, Yadav S, Kundu BS (2004) Prospects of utilizing phosphate solubilizing Pseudomonas as biofungicide. Indian J Microbiol 44:91–94

    Google Scholar 

  • Subba Rao NS (1993) Biofertilizer’s in agriculture and forestry. Oxford Press and IBH Publishing, New Delhi

    Google Scholar 

  • Subba Rao NS, Bajpai PD (1965) Fungi on the surface of root nodules and phosphate solubilization. Experientia, 21:386–387

    CAS  PubMed  Google Scholar 

  • Sujatha E, Grisham S, Reddy SM (2004) Phosphate solubilization by thermophilic microorganisms. Indian J Microbiol 44:101–104

    CAS  Google Scholar 

  • Sundara Rao WVB, Sinha MK (1963) Phosphate dissolving organisms in the soil and the rhizosphere. Indian J Agric Sci 33:272–278

    Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the change in soil available phosphorus and sugarcane and sugar yield. Field Crop Res 77:43–49

    Google Scholar 

  • Taha SM, Mohmoud SAZ, El-Damati AA, Abd-El-Hafez AM (1969) Activity of phosphate dissolving bacteria in Egyptian soil. Plant Soil 31:149–160

    Google Scholar 

  • Tao GC, Tian SJ, Cai MY, Xie GH (2008) Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    CAS  Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    CAS  Google Scholar 

  • Tarafdar JC, Junk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soil 3:199–204

    CAS  Google Scholar 

  • Thaller MC, Berlutti F, Schippa S, Lombardi G, Rossolini GM (1994) Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology 140:1341–1350

    CAS  PubMed  Google Scholar 

  • Thaller MC, Berlutti F, Schippa S, Iori P, Passariello C, Rossolini GM (1995) Heterogeneous patterns of acid phosphatases containing low-molecular-mass Polipeptides in members of the family Enterobacteriaceae. Int J Syst Bacteriol 4:255–261

    Google Scholar 

  • Tilak KVBR (1991) Bacterial fertilizers. Tech Bull. ICAR, New Delhi

    Google Scholar 

  • Tilak KVBR, Rangaswami N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tomar RKS, Chourasia SC, Raghu JS, Singh VB (1996) Growth, yield and net returns of mustard under different levels of Nitrogen and Sulphur application on clay loam soils. J Oil Seed Res 13:13–17

    Google Scholar 

  • Toro M, Azcon R, Herrera R (1996) Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseoloides exerted by P-solubilizing rhizobacteria. Biol Fertil Soils 21:23–29

    Google Scholar 

  • Toro M, Azcon R, Barea, JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability [32P] and nutrient cycling. App Env Microbiol 63:4408–4412

    CAS  Google Scholar 

  • Tripura C, Reddy PS, Reddy MK, Sashidhar B, Podile AR (2007) Glucose dehydrogenase of a rhizobacterial strain of Enterobacter asburiae involved in mineral phosphate solubilization share properties and sequence homology with other members of enterobacteriaceae. Indian J Microbiol 47:126–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trivedi P, Sa T (2007) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at low temperatures. Curr Microbiol 56:140–144

    PubMed  Google Scholar 

  • Trivedi P, Pandey A (2007) Low temperature phosphate solubilization and plant growth promotion by Psychrotrophic bacteria isolated from Indian Himalayan Region. Res J Microbiol 2:454–461

    Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier based preparation of plant growth promotion bacteria inoculants suitable for use in cooler region. World J Microbiol Biotechnol 21:941–945

    Google Scholar 

  • Tye AJ, Siu FK, Leung TY, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis. Appl Microbiol Biotechnol 59:190–197

    CAS  PubMed  Google Scholar 

  • Van Schie BJ, De Mooy OH, Linton JD, Van Dijken JP, Kuenen JG (1987). PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J Gen Microbiol 133:867–875

    CAS  Google Scholar 

  • Varsha NHH (2002) Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem 32:559–565

    Google Scholar 

  • Varsha-Narsian J, Thakkar J, Patel HH (1994) Inorganic phosphate solubilization by some yeast. Indian J Microbiol 35:113–118

    Google Scholar 

  • Vassilev N, Fenice M, Federici F (1996) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol Tech 20:585–588

    Google Scholar 

  • Vázquez P (1996) México. Bacterias solubilizadoras de fosfatos inorgánicos asociadas a la rhizosfera de los mangles: Avicennia germinans [L.] L y Laguncularia racemosa [L.] Gerth. Tesis para el título de Biologo Marino Univ. Autónoma de Baja California Sur. La Paz, B.C.S.

    Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortez A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid costal lagoon. Biol Fertil Soil 30:460–468

    CAS  Google Scholar 

  • Venkateshwarlu B, Rao AV, Raina P (1984) Evaluation of phosphorus solubilization by microorganisms isolated from aridsoil. J Indian Soc Soil Sci 32:273–277

    Google Scholar 

  • Verma LN (1993) Biofertiliser in agriculture. In: Thampan PK (ed.) Organics in soil health and crop production. Peekay Tree Crops Development Foundation, Cochin, pp 152–183

    Google Scholar 

  • Vescovi EG, Soncini FC, Groisman EA (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165–174

    CAS  Google Scholar 

  • Viveganandhan G, Jahuri KS (2002) Efficacy of a rock phosphate based soil implant formulation of phosphobacteria on soybean. Indian J Biotechnol 1:180–187

    Google Scholar 

  • Vyas P, Rahi P, Gulati A (2009) Stress tolerance and Genetic variability of phosphate solubilizing fluorescent Pseudomonas from the cold deserts of the Trans-Himalayas. Microb Ecol 58:425–434

    CAS  PubMed  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing Influence of Microorganisms on Phosphorus Bioavailability in Soils fungi. Adv Agron 69:100–153

    Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 32:655–665

    Google Scholar 

  • Xu JG, Johnson RL (1995) Root growth, microbial activity and phosphatase activity in oil-contaminated, remediated and uncontaminated soils planted to barley and field pea. Plant and Soil 173:3–10

    CAS  Google Scholar 

  • Yadav KS, Dadarwal KR (1997) Phosphate solubilization and mineralization through soil microorganisms. In: Dadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, pp 293–308

    Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proc World Acad Sci Eng Technol 37:90–92

    Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agric 30:223–230

    CAS  Google Scholar 

  • Zou X, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus rates in soils. Plant Soil 147:243–250

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Indian Council of Agricultural Research, under the project ‘‘Application of Microorganisms in Agriculture and Allied Sectors”. PJ & T acknowledged the financial assistance received as JRF/ SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Joshi, P., Joshi, G., Tanuja, Mishra, P., Bisht, J., Bhatt, J. (2014). Diversity of Cold Tolerant Phosphate Solubilizing Microorganisms from North Western Himalayas. In: Maheshwari, D. (eds) Bacterial Diversity in Sustainable Agriculture. Sustainable Development and Biodiversity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-05936-5_10

Download citation

Publish with us

Policies and ethics