Skip to main content

Nonlinear Transmission Conditions for time Domain Decomposition Method

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 98))

  • 1268 Accesses

Abstract

In this paper, we propose a right transmission condition for the time decomposition that consists to transform the initial boundary value problem into a time boundary values problem. This allows us to use classical multiplicative Schwarz algorithm using non overlapping time slices. It also avoids the symmetrizing of the time interval needed to set the unknown value of the solution at the end time boundary of the last time slice. We show that, for nonlinear scalar problems, we must imposed some invariant of the problem as transmission conditions between time slices. We derive a Robin transmission condition in order to break the sequentiality of the propagating of the exact solution from the first time slice to the time slices that follow. We show the purely linear behavior of this multiplicative Schwarz and its extrapolation to the right transmission conditions using the Aitken’s acceleration of the convergence technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellen, A., Zennaro, M.: Parallel algorithms for initial value problems for difference and differential equations. J. Comput. Appl. Math. 25(3), 341–350 (1989). doi:10.1016/0377-0427(89)90037-X

    Article  MATH  MathSciNet  Google Scholar 

  2. Berninger, H., Kornhuber, R., Sander, O.: Convergence behaviour of Dirichlet-Neumann and Robin methods for a nonlinear transmission problem. In: Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78, pp. 87–98. Springer, Heidelberg (2011). doi:10.1007/978-3-642-11304-8_8

    Google Scholar 

  3. Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122(1–2), 1–21 (2000). doi:10.1016/S0377-0427(00)00360-5. Numerical analysis 2000, Vol. II: Interpolation and extrapolation

    Google Scholar 

  4. Caetano, F., Gander, M.J., Halpern, L., Szeftel, J.: Schwarz waveform relaxation algorithms with nonlinear transmission conditions for reaction-diffusion equations. In: Domain Decomposition Methods in Science and Engineering XIX, Lecture Notes in Computational Science and Engineering, vol. 78, pp. 245–252. Springer, Heidelberg (2011). doi:10.1007/978-3-642-11304-8_27

    Google Scholar 

  5. Linel, P.: Méthodes de décomposition de domaines en temps et en espace pour la résolution de systèmes d’ EDO non-linéaires. Ph.D. thesis, Universté Lyon 1 (2010)

    Google Scholar 

  6. Linel, P., Tromeur-Dervout, D.: Aitken-Schwarz and schur complement methods for time domain decomposition. In: Chapman, B., Desprez, F., Joubert, G., Lichnewsky, A., Peters, F., Priol, T. (eds.) Parallel Computing: From Multicores and GPU’s to Petascale. Advances in Parallel Computing, vol. 19, pp. 75–82. IOS Press, Amsterdam (2010)

    Google Scholar 

  7. Linel, P., Tromeur-Dervout, D.: Une méthode de décomposition en temps avec des schémas d’intégration réversible pour la résolution de systèmes d’équations différentielles ordinaires. C. R. Math. Acad. Sci. Paris 349(15–16), 911–914 (2011). doi:10.1016/j.crma.2011.07.002

    Article  MATH  MathSciNet  Google Scholar 

  8. Linel, P., Tromeur-Dervout, D.: Analysis of the time-schwarz ddm on the heat pde. Comput. Fluids 80, 94–101 (2013). doi:10.1016/j.compfluid.2012.04.023. http://www.sciencedirect.com/science/article/pii/S0045793012001624

  9. Tromeur-Dervout, D.: Meshfree adaptative Aitken-Schwarz domain decomposition with application to darcy flow. In: Topping, B.H.V., Ivanyi, P. (eds.) Parallel, Distributed and Grid Computing for Engineering. Computational Science Engineering and Technology Series, vol. 21, pp. 217–250 (2009). doi:10.4203/csets.21.11

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Agency of Research through the project ANR-12-MONU-0012 H2MNO4. Second author was backed to the Région Rhône-Alpes. This work used the HPC resources of Center for the Development of Parallel Scientific Computing (CDCSP) of University Lyon 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tromeur-Dervout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Linel, P., Tromeur-Dervout, D. (2014). Nonlinear Transmission Conditions for time Domain Decomposition Method. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_94

Download citation

Publish with us

Policies and ethics