Skip to main content

The Antibody 14D9 as an Experimental Model for Molecular Farming

  • Chapter

Abstract

The catalytic antibody 14D9 is an IgG1-like murine antibody that catalyzes the highly enantioselective protonation of enol-ethers. It was utilised as experimental model for studying the expression of an antibody in tobacco.

The ability of Nicotiana tabacum to express the whole antibody was confirmed. Also, in vitro cultures of N. tabacum were established and their ability to express the antibody was demonstrated. Attempts to improve the 14D9 initial yields were performed by the addition of a KDEL endoplasmic reticulum (ER) retention signal to the construct, therefore two N. tabacum lines were used in all the experiments, one with the secretory variant of the antibody (sec-Ab), and another one that retains the antibody in the ER (Ab-KDEL).

Other strategies tested were the optimization of plant growth regulator balance in the culture medium, and the addition of protein stabilizers, plant cell wall permeabilizers and osmotic agents. Besides, hairy root cultures were established and the conditions to express 14D9 were analyzed.

Comparing the yields obtained in all the platforms and system examined, we can conclude that hairy roots growing in Erlenmeyer flasks and Ab-KDEL cell suspension cultures growing in a 2-l bioreactor gave the highest 14D9 yields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez MA, Rodríguez Talou J, Paniego N, Giulietti AM (1994) Solasodine production in transformed cultures (roots and shoots) of Solanum eleagnifolium Cav. Biotechnol Lett 16(4):393–396

    CAS  Google Scholar 

  • Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    Article  CAS  PubMed  Google Scholar 

  • Brown CR, Hong-Brown LQ, Biwersi J, Wekman AS, Welch WJ (1996) Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1(2):117–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2006) Loss of secreted antibody from transgenic plant tissue culture due to surface adsorption. J Biotechnol 122:39–54

    Article  CAS  PubMed  Google Scholar 

  • Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Guiller JT, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  PubMed  Google Scholar 

  • Hasserodt J (1999) Organic synthesis supported by antibody catalysis. New Tools Synth 12:2007–2022

    Google Scholar 

  • Hein MB, Tang Y, McLeod DA, Janda KD, Hiatt A (1991) Evaluation of immunoglobulins from plant cells. Biotechnology Progress 7:455–461

    Article  CAS  PubMed  Google Scholar 

  • Henderson TR, Henderson RF, York JL (1975) Effects of dimethyl sulfoxide on subunit proteins. Ann N Y Acad Sci 243:38–53

    Article  CAS  PubMed  Google Scholar 

  • Hiatt A, Cafferkey R, Bodwish K (1989) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563

    Google Scholar 

  • Horsch R, Fraley R, Rogers S, Sanders P, Lloyd A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  • Jahangiri GK, Reymond JL (1994) Antibody-catalyzed hydrolysis of enol ethers. 2. Structure of the antibody-transition state complex and origin of the enantioselectivity. J Am Chem Soc 116:11264–11274

    Article  CAS  Google Scholar 

  • López J, Parma Y, Meroño T, Petruccelli S, Marconi P, Pitta-Alvarez S, Alvarez MA (2007) Producción del anticuerpo recombinante 14D9 en suspensiones celulares de Nicotiana tabacum. Boletín Latinoam Caribe Plantas Medicinales Aromáticas (BLACPMA) 6(6):399–400

    Google Scholar 

  • López J, Lencina F, Petruccelli S, Marconi P, Alvarez MA (2010) Influence of the KDEL signal, DMSO and mannitol on the production of the recombinant antibody 14D9 by long-term Nicotiana tabacum cell suspension culture. Plant Cell Tissue Organ Cult 103:307–314

    Article  Google Scholar 

  • Magnuson NS, Linzmaier PM, Gao JW, Reeves R, Gynheung AN, Lee JM (1996) Enhanced recovery of a secreted mammalian protein from suspension culture of genetically modified tobacco cells. Protein Expr Purif 7(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Marconi PL, Alvarez MA (2014a) State of the art on plant-made single-domain antibodies. J Immunol Techn Infect Dis, in press. doi: 10.4172/2329-9541.1000125

  • Marconi PL, Alvarez MA (2014b) The expression of the 14D9 antibody in suspended cells of Nicotiana tabacum cultures increased by the addition of protein stabilizers and by transference from Erlenmeyer flasks to a 2-l bioreactor. Biotechnol Prog, in press. doi: 10.1002/btpr.1940

  • Martínez CA, Petruccelli S, Giulietti AM, Alvarez MA (2005) Expression of the antibody 14D9 in Nicotiana tabacum hairy roots. Electron J Biotechnol 8(2):170–176

    Article  Google Scholar 

  • Paul M, Ma JKC (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67

    Article  CAS  PubMed  Google Scholar 

  • Payne GF, Bringi V, Prince C, Shuler ML (1991) The quest for commercial production of chemicals from plant cell culture. In: Payne GF, Bringi V, Prince C, Shuler ML (eds) Plant cell and tissue culture in liquid systems. Hanser Publishers, Munich, pp 1–10

    Google Scholar 

  • Petruccelli S, Otegui MS, Lareu F, Trandinhthanhlien O, Fichette AC et al (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4:511–527

    CAS  PubMed  Google Scholar 

  • Reymond JL (1999) Catalytic antibodies for organic synthesis. In: Biocatalysis-from discovery to application, Topics in current chemistry. Springer, Berlin/Heidelberg, pp 59–93

    Chapter  Google Scholar 

  • Reymond JL, Janda KD, Lerner RA (1991) Antibody catalysis of glycosidic bond hydrolysis. Angew Chem Int Ed 30:1711–1714

    Article  Google Scholar 

  • Reymond JL, Jahangiri GK, Stoudt C, Lerner RA (1993) Antibody catalyzed hydrolysis of enol ethers. J Am Chem Soc 115(10):3909–3917

    Article  CAS  Google Scholar 

  • Reymond JL, Reber RA, Lerner RA (1994) Enantioselective, multi-Gram scale synthesis with a catalytic antibody. Angew Chem Int Ed Engl 33:475–477

    Article  Google Scholar 

  • Schouten A, Roosien J, de Boer JM, Wilmink A, Rosso MN et al. (1997) Improving scFv antibody expression levels in the plant cytosol. FEBS Letters 415:235–241

    Google Scholar 

  • Schouten A, Roosien J, van Engelen FA, de Jong GA, Borst-Vrenssen AWM, Zilverentant JF (1996) The C-terminal KDEL sequence increases the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30:781–793

    Article  CAS  PubMed  Google Scholar 

  • Sharp JM, Doran PM (2001) Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol Prog 17(6):979–992

    Article  CAS  PubMed  Google Scholar 

  • Sinha SC, Keinan E, Reymond HL (1993) Antibody-catalyzed reversal of chemoselectivity. Proc Natl Acad Sci USA 90:11910–11913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soderquist RG, Lee JM (2005) Enhanced production of recombinant proteins from plant cells by the application of osmotic stress and protein stabilization. Plant Cell Rep 24:127–132

    Article  CAS  PubMed  Google Scholar 

  • Tanaka F (2002) Catalytic antibodies as designer proteases and esterases. Chem Rev 102:4885–4906

    Article  CAS  PubMed  Google Scholar 

  • Tsoi BMY, Doran P (2002) Effect of medium properties and additives on antibody stability and accumulation in suspended plant cell cultures. Biotechnol Appl Biochem 35:171–180

    Article  CAS  PubMed  Google Scholar 

  • Ulrich HD, Patten PA, Yang PL, Romesberg FE, Schultz PG (1995) Expression studies of catalytic antibodies. Proc Natl Acad Sci USA 92:11907–11911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1:109–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whal MF, An GHA, Lee JM (1995) Effects of dimethyl sulfoxide on heavy chain monoclonal antibody production from plant cell culture. Biotechnol Lett 17(5):463–468

    Article  Google Scholar 

  • Wimmer R, Olsson M, Petersen MTN, Hattikaul R, Petersen SB, Muller N (1997) Towards a molecular level understanding of protein stabilization: the interaction between lysozyme and sorbitol. J Biotechnol 55:85–100

    Article  CAS  PubMed  Google Scholar 

  • Wongsamuth R, Doran P (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54(5):401–415

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Matsui T, Shinmyo S (2004) The plant vesicular transport engineering for production of useful recombinant proteins. J Mol Catal B: Enzym 28:167–171

    Article  CAS  Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2003) Production of a functional catalytic antibody ScFv- NusA fusion protein in bacterial cytoplasm. J Biochem 133:577–581

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2004) Molecular mechanism of enantioselective proton transfer to carbon in catalytic antibody 14D9. Proc Natl Acad Sci USA 101(10):3387–3392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alvarez, M.A. (2014). The Antibody 14D9 as an Experimental Model for Molecular Farming . In: Plant Biotechnology for Health. Springer, Cham. https://doi.org/10.1007/978-3-319-05771-2_7

Download citation

Publish with us

Policies and ethics