Skip to main content

Porous Silicon Formation by Galvanic Etching

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

The different classes of electrochemical etching of silicon are briefly compared and contrasted, and then the literature on galvanic etching is comprehensively reviewed. Thick uniform mesoporous films with surface areas as high as 910 m2/g have been achieved with optimized galvanic etching (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allongue P, Maroun F (2006) Metal electrodeposition on single crystal metal surfaces: mechanisms, structure and applications. Curr Opin Solid State Mater 10:173–181

    Article  Google Scholar 

  • Archer RJ (1960) Stain films on silicon. J Phys Chem Solids 14:104–110

    Article  Google Scholar 

  • Ashruf CMA, French PJ, Bressers PMMC, Sarro PM, Kelly JJ (1998) A new contactless electrochemical etch-stop based on a gold/silicon/TMAH galvanic cell. Sensor Actuat A 66:284–291

    Article  Google Scholar 

  • Ashruf CMA, French PJ, Bressers PMMC, Kelly JJ (1999) Galvanic porous silicon formation without external contacts. Sensor Actuat A 74:118–122

    Article  Google Scholar 

  • Ashruf CMA, French PJ, Sarro PM, Kazinczi R, Xia XH, Kelly JJ (2000) Galvanic etching for sensor fabrication. J Micromech Microeng 10:505–515

    Article  Google Scholar 

  • Becker CR, Currano LJ, Churaman WA, Stoldt CR (2010a) Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate. ACS Appl Mater Interfaces 2:2998–3003

    Article  Google Scholar 

  • Becker CR, Miller DC, Stoldt CR (2010b) Galvanically coupled gold/silicon-on-insulator microstructures in hydrofluoric acid electrolytes: finite element simulation and morphological analysis of electrochemical corrosion. J Micromech Microeng 20:085017

    Article  Google Scholar 

  • Becker CR, Apperson S, Morris CJ, Gangopadhyay S, Currano LJ, Churaman WA, Stoldt CR (2011) Galvanic porous silicon composites for high-velocity nanoenergetics. Nano Lett 11:803–807

    Article  Google Scholar 

  • Bressers PMMC, Plakman M, Kelly JJ (1996) Etching and electrochemistry of silicon in acidic bromine solutions. J Electroanal Chem 406:131–137

    Article  Google Scholar 

  • Carraro C, Maboudian R, Magagnin L (2007) Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surf Sci Rep 62:499–525

    Article  Google Scholar 

  • Chabal YJ, Harris AL, Raghavachari K, Tully JC (1993) Infrared spectroscopy of H-terminated silicon surfaces. Int J Mod Phys B 7:1031–1078

    Article  Google Scholar 

  • Chasiotis I, Knauss WG (2003) The mechanical strength of polysilicon films: part 1. The influence of fabrication governed surface conditions. J Mech Phys Solids 51:1533–1550

    Article  Google Scholar 

  • Chattopadhyay S, Li X, Bohn PW (2002) In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J Appl Phys 91:6134–6140

    Article  Google Scholar 

  • Clark IT, Aldinger BS, Gupta A, Hines MA (2010) Aqueous etching produces Si(100) surfaces of near-atomic flatness: strain minimization does not predict surface morphology. J Phys Chem C 114:423–428

    Article  Google Scholar 

  • daRosa CP, Maboudian R, Iglesia E (2008) Copper deposition onto silicon by galvanic displacement: effect of silicon dissolution rate. J Electrochem Soc 155:E70–E78

    Article  Google Scholar 

  • Dudley ME, Kolasinski KW (2008) Wet etching of pillar covered silicon surface: formation of crystallographically defined macropores. J Electrochem Soc 155:H164–H171

    Article  Google Scholar 

  • Gorostiza P, Anbu Kulandainathan M, Díaz R, Sanz F, Allongue P, Morante JR (2000) Charge exchange processes during the open-circuit deposition of nickel on silicon from fluoride solutions. J Electrochem Soc 147:1026–1030

    Article  Google Scholar 

  • Gorostiza P, Allongue P, Díaz R, Morante JR, Sanz F (2003) Electrochemical characterization of the open-circuit deposition of platinum on silicon from fluoride solutions. J Phys Chem B 107:6454–6461

    Article  Google Scholar 

  • Harada Y, Li X, Bohn PW, Nuzzo RG (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709–8717

    Article  Google Scholar 

  • Hines MA (2003) In search of perfection: understanding the highly defect-selective chemistry of anisotropic etching. Annu Rev Phys Chem 54:29–56

    Article  Google Scholar 

  • Hines MA, Faggin MF, Gupta A, Aldinger BS, Bao K (2012) Self-propagating reaction produces near-ideal functionalization of Si(100) and flat surfaces. J Phys Chem C 116:18920–18929

    Article  Google Scholar 

  • Huang Z, Geyer N, Werner P, de Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308

    Article  Google Scholar 

  • Huh M, Yu Y, Kahn H, Payer J, Heuer A (2006) Galvanic corrosion during processing of polysilicon microelectromechanical systems – the effect of Au metallization. J Electrochem Soc 153:G644–G649

    Article  Google Scholar 

  • Kahn H, Deeb C, Chasiotis I, Heuer AH (2005) Anodic oxidation during MEMS processing of silicon and polysilicon: native oxides can be thicker than you think. J Microelectromech Syst 14:914–923

    Article  Google Scholar 

  • Kelly JJ, Philipsen HGG (2005) Anisotropy in the wet-etching of semiconductors. Curr Opin Solid St M 9:84–90

    Article  Google Scholar 

  • Kelly JJ, Xia XH, Ashruf CMA, French PJ (2001) Galvanic cell formation: a review of approaches to silicon etching for sensor fabrication. IEEE Sensors J 1:127–142

    Article  Google Scholar 

  • Koker L, Kolasinski KW (2000) Photoelectrochemical etching of Si and porous Si in aqueous HF. Phys Chem Chem Phys 2:277–281

    Article  Google Scholar 

  • Koker L, Kolasinski KW (2001) Laser-assisted formation of porous silicon in diverse fluoride solutions: reactions kinetics and mechanistic implications. J Phys Chem B 105:3864–3871

    Article  Google Scholar 

  • Kolasinski KW (2010) Charge transfer and nanostructure formation during electroless etching of silicon. J Phys Chem C 114:22098–22105

    Article  Google Scholar 

  • Kolasinski KW, Gogola JW (2012) Electroless etching of Si with IO3 − and related species. Nanoscale Res Lett 7:323

    Article  Google Scholar 

  • Kolasinski KW, Gogola JW, Barclay WB (2012) A test of Marcus theory predictions for electroless etching of silicon. J Phys Chem C 116:21472–21481

    Article  Google Scholar 

  • Lehmann V (2002) Electrochemistry of silicon: instrumentation, science, materials and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  Google Scholar 

  • Liu YF, Xie J, Zhao H, Luo W, Yang JL, An J, Yang FH (2012) An effective approach for restraining electrochemical corrosion of polycrystalline silicon caused by an HF-based solution and its application for mass production of MEMS devices. J Micromech Microeng 22:035003

    Article  Google Scholar 

  • Meltzer S, Mandler D (1995) Study of silicon etching in HBr solutions using a scanning electrochemical microscope. J Chem Soc Faraday Trans 91:1019–1024

    Article  Google Scholar 

  • Miller DC, Gall K, Stoldt CR (2005) Galvanic corrosion of miniaturized polysilicon structures morphological, electrical, and mechanical effects. Electrochem Solid State Lett 8:G223–G226

    Article  Google Scholar 

  • Miller DC, Hughes WL, Wang ZL, Gall K, Stoldt CR (2007) Mechanical effects of galvanic corrosion on structural polysilicon. J Microelectromech Sys 16:87–101

    Article  Google Scholar 

  • Miller DC, Becker CR, Stoldt CR (2008) Relation between morphology, etch rate, surface wetting, and electrochemical characteristics for micromachined silicon subject to galvanic corrosion. J Electrochem Soc 155:F253–F265

    Article  Google Scholar 

  • Muhlstein CL, Stach EA, Ritchie RO (2002) A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater 50:3579–3595

    Article  Google Scholar 

  • Nakamura T, Hosoya N, Tiwari BP, Adachi S (2010) Properties of silver/porous-silicon nanocomposite powders prepared by metal assisted electroless chemical etching. J Appl Phys 108:104315

    Article  Google Scholar 

  • Nakamura T, Tiwari BP, Adachi S (2011) Direct synthesis and enhanced catalytic activities of platinum and porous-silicon composites by metal-assisted chemical etching. Jpn J Appl Phys 50:081301

    Article  Google Scholar 

  • Nielsen D, Abuhassan L, Alchihabi M, Al-Muhanna A, Host J, Nayfeh MH (2007) Current-less anodization of intrinsic silicon powder grains: formation of fluorescent Si nanoparticles. J Appl Phys 101:114302

    Article  Google Scholar 

  • Noguchi N, Suemune I (1993) Luminescent porous silicon synthesized by visible light irradiation. Appl Phys Lett 62:1429–1431

    Article  Google Scholar 

  • Noguchi N, Suemune I (1994) Selective formation of luminescent porous silicon by photosynthesis. J Appl Phys 75:4765–4767

    Article  Google Scholar 

  • Ogata YH, Kobayashi K (2006) Electrochemical metal deposition on silicon. Curr Opin Solid State Mater Sci 10:163–172

    Article  Google Scholar 

  • Peng K, Yan Y, Gao S, Zhu J (2003) Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Func Mater 13:127–132

    Article  Google Scholar 

  • Pierron ON, Macdonald DD, Muhlstein CL (2005) Galvanic effects in Si-based microelectromechanical systems: thick oxide formation and its implications for fatigue reliability. Appl Phys Lett 86:211919

    Article  Google Scholar 

  • Song YY, Gao ZD, Kelly JJ, Xia XH (2005) Galvanic deposition of nanostructured noble-metal films on silicon. Electrochem Solid State Lett 8:C148–C150

    Article  Google Scholar 

  • Splinter A, Stürmann J, Benecke W (2001a) Novel porous silicon formation technology using internal current generation. Mater Sci Eng C 15:109–112

    Article  Google Scholar 

  • Splinter A, Sturmann J, Benecke W (2001b) New porous silicon formation technology using internal current generation with galvanic elements. Sensor Actuat A 92:394–399

    Article  Google Scholar 

  • Sun NN, Chen JM, Jiang C, Zhang YJ, Shi F (2012) Enhanced wet-chemical etching to prepare patterned silicon mask with controlled depths by combining photolithography with galvanic reaction. Ind Eng Chem Res 51:793–799

    Google Scholar 

  • Turner DR (1960) On the mechanism of chemically etching germanium and silicon. J Electrochem Soc 107:810–816

    Article  Google Scholar 

  • Wang CH, Sun DC, Xia XH (2006) One-step formation of nanostructured gold layers via a galvanic exchange reaction for surface enhancement Raman scattering. Nanotechnology 17:651–657

    Article  Google Scholar 

  • Xia XH, Ashruf CMA, French PJ, Kelly JJ (2000) Galvanic cell formation in silicon/metal contacts: the effect on silicon surface morphology. Chem Mater 12:1671–1678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt W. Kolasinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Kolasinski, K.W. (2014). Porous Silicon Formation by Galvanic Etching. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_3

Download citation

Publish with us

Policies and ethics