Skip to main content

Mesopore Diffusion Within Porous Silicon

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

In many applications exploiting mesoporous silicon (PSi), their performance may be controlled by the rate of diffusive propagation of the confined molecules. The pulsed field gradient technique of nuclear magnetic resonance provides the most direct access to molecular diffusion. The different factors determining the diffusivities in PSi are reviewed. In particular, diffusivities in liquid state are shown to be most strongly affected by mesoscale disorder. Atomistic disorder is shown to control surface diffusion in applications in which PSi is brought into contact with gas phases at low vapor pressures. Correlations between the compositions of phases coexisting within the pore space, namely, liquid and gaseous, and liquid and solid ones, respectively, are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaroli LN, Urteaga R, Berli CLA, Koropecki RR (2011) Capillary filling in nanostructured porous silicon. Langmuir 27(5):2067–2072

    Article  Google Scholar 

  • Ala-Nissila T, Ferrando R, Ying SC (2002) Collective and single particle diffusion on surfaces. Adv Phys 51(3):949–1078

    Article  Google Scholar 

  • Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ (2004) Engineering the chemistry and nanostructure of porous silicon fabry-perot films for loading and release of a steroid. Langmuir 20(25):11264–11269

    Article  Google Scholar 

  • Barthelemy P, Ghulinyan M, Gaburro Z, Toninelli C, Pavesi L, Wiersma DS (2007) Optical switching by capillary condensation. Nat Photonics 1(3):172–175

    Article  Google Scholar 

  • Berezhkovskii AM, Pustovoit MA, Bezrukov SM (2007) Diffusion in a tube of varying cross section: numerical study of reduction to effective one-dimensional description. J Chem Phys 126(13):134705–134706

    Article  Google Scholar 

  • Burada PS, Hanggi P, Marchesoni F, Schmid G, Talkner P (2009) Diffusion in confined geometries. ChemPhysChem 10(1):45–54

    Article  Google Scholar 

  • Callaghan PT (2011) Translational dynamics & magnetic resonance. Oxford University Press, New York

    Book  Google Scholar 

  • Carslaw HS, Jaeger JC (1946) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  • Cerclier CV, Ndao M, Busselez R, Lefort R, Grelet E, Huber P, Kityk AV, Noirez L, Schonhals A, Morineau D (2012) Structure and phase behavior of a discotic columnar liquid crystal confined in nanochannels. J Phys Chem C 116(35):18990–18998

    Article  Google Scholar 

  • Cussler EL (2009) Diffusion: mass transfer in fluid systems, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • de Smet L, Zuilhof H, Sudholter EJR, Wittstock G, Duerdin MS, Lie LH, Houlton A, Horrocks BR (2002) Diffusion in porous silicon: effects on the reactivity of alkenes and electrochemistry of alkylated porous silicon. Electrochim Acta 47(16):2653–2663

    Article  Google Scholar 

  • Desai TA, Hansford D, Ferrari M (1999) Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J Membr Sci 159(1–2):221–231

    Article  Google Scholar 

  • Dvoyashkin M, Khokhlov A, Valiullin R, Kärger J (2008) Freezing of fluids in disordered mesopores. J Chem Phys 129(15):154702–154706

    Article  Google Scholar 

  • Dvoyashkin M, Khokhlov A, Naumov S, Valiullin R (2009) Pulsed field gradient NMR study of surface diffusion in mesoporous adsorbents. Microporous Mesoporous Mater 125(1–2):58–62

    Article  Google Scholar 

  • Gaburro Z, Daldosso N, Pavesi L, Faglia G, Baratto C, Sberveglieri G (2001) Monitoring penetration of ethanol in a porous silicon microcavity by photoluminescence interferometry. Appl Phys Lett 78(23):3744–3746

    Article  Google Scholar 

  • Gomer R (1990) Diffusion of adsorbates on metal-surfaces. Rep Prog Phys 53(7):917–1002

    Article  Google Scholar 

  • Gruener S, Huber P (2008) Knudsen diffusion in silicon nanochannels. Phys Rev Lett 100(6):064502–064504

    Article  Google Scholar 

  • Guegan R, Morineau D, Loverdo C, Beziel W, Guendouz M (2006) Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon. Phys Rev E 73(1):011706–011707

    Article  Google Scholar 

  • Hofmann T, Wallacher D, Mayorova M, Zorn R, Frick B, Huber P (2012) Molecular dynamics of n-hexane: a quasi-elastic neutron scattering study on the bulk and spatially nanochannel-confined liquid. J Chem Phys 136(12):124505

    Article  Google Scholar 

  • Ileri N, Stroeve P, Palazoglu A, Faller R, Zaidi SH, Nguyen HT, Britten JA, Letant SE, Tringe JW (2012) Fabrication of functional silicon-based nanoporous membranes. J Micro-Nanolithogr MEMS MOEMS 11(1)

    Google Scholar 

  • Jackson CL, McKenna GB (1990) The melting behavior of organic materials confined in porous solids. J Chem Phys 93(12):9002–9011

    Article  Google Scholar 

  • Jobic H, Theodorou DN (2007) Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites. Microporous Mesoporous Mater 102(1–3):21–50

    Article  Google Scholar 

  • Kärger J, Ruthven DM, Theodorou D (2012) Diffusion in zeolites and other nanoporous materials. Wiley, Weinheim

    Book  Google Scholar 

  • Kavalenka MN, Striemer CC, Fang DZ, Gaborski TR, McGrath JL, Fauchet PM (2012) Ballistic and non-ballistic gas flow through ultrathin nanopores. Nanotechnology 23(14):145706

    Article  Google Scholar 

  • Kondrashova D, Dvoyashkin M, Valiullin R (2011) Structural characterization of porous solids by simultaneously monitoring the low-temperature phase equilibria and diffusion of intrapore fluids using nuclear magnetic resonance. New J Phys 13(1):015008

    Article  Google Scholar 

  • Kovalev D, Fujii M (2005) Silicon nanocrystals: photosensitizers for oxygen molecules. Adv Mater 17(21):2531–2544

    Article  Google Scholar 

  • Kusmin A, Gruener S, Henschel A, de Souza N, Allgaier J, Richter D, Huber P (2010) Polymer dynamics in nanochannels of porous silicon: a neutron spin echo study. Macromolecules 43(19):8162–8169

    Article  Google Scholar 

  • Lehmann V, Stengl R, Luigart A (2000) On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mater Sci Eng B 69:11–22

    Article  Google Scholar 

  • Li MD, Hu M, Liu QL, Ma SY, Sun P (2013) Microstructure characterization and NO2-sensing properties of porous silicon with intermediate pore size. Appl Surf Sci 268:188–194

    Article  Google Scholar 

  • Lysenko V, Vitiello J, Remaki B, Barbier D (2004) Gas permeability of porous silicon nanostructures. Phys Rev E 70(1):017301

    Article  Google Scholar 

  • Mares JW, Weiss SM (2011) Diffusion dynamics of small molecules from mesoporous silicon films by real-time optical interferometry. Appl Opt 50(27):5329–5337

    Article  Google Scholar 

  • Naumov S, Khokhlov A, Valiullin R, Kärger J, Monson PA (2008a) Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores. Phys Rev E 78(6):060601–060604

    Article  Google Scholar 

  • Naumov S, Valiullin R, Monson PA, Kärger J (2008b) Probing memory effects in confined fluids via diffusion measurements. Langmuir 24(13):6429–6432

    Article  Google Scholar 

  • Naumov S, Valiullin R, Kärger J, Monson PA (2009) Understanding adsorption and desorption processes in mesoporous materials with independent disordered channels. Phys Rev E 80(3):031607

    Article  Google Scholar 

  • Petersen EE (1958) Diffusion in a pore of varying cross section. AIChE J 4(3):343–345

    Article  Google Scholar 

  • Pollard WG, Present RD (1948) On gaseous self-diffusion in long capillary tubes. Phys Rev 73(7):762–774

    Article  Google Scholar 

  • Prestidge CA, Barnes TJ, Lau CH, Barnett C, Loni A, Canham L (2007) Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin Drug Deliv 4(2):101–110

    Article  Google Scholar 

  • Renisch S, Schuster R, Wintterlin J, Ertl G (1999) Dynamics of adatom motion under the influence of mutual interactions: O/Ru(0001). Phys Rev Lett 82(19):3839–3842

    Article  Google Scholar 

  • Schechter I, Benchorin M, Kux A (1995) Gas-sensing properties of porous silicon. Anal Chem 67(20):3727–3732

    Article  Google Scholar 

  • Valiullin R, Kortunov P, Kärger J, Timoshenko V (2004) Concentration-dependent self-diffusion of liquids in nanopores: a nuclear magnetic resonance study. J Chem Phys 120(24):11804–11814

    Article  Google Scholar 

  • Valiullin R, Khokhlov A (2006) Orientational ordering of linear n-alkanes in silicon nanotubes. Phys Rev E 73(5):051604–051605

    Article  Google Scholar 

  • Valiullin R, Kortunov P, Kärger J, Timoshenko V (2005a) Surface self-diffusion of organic molecules adsorbed in porous silicon. J Phys Chem B 109:5746–5752

    Article  Google Scholar 

  • Valiullin R, Kortunov P, Kärger J, Timoshenko V (2005b) Concentration-dependent self-diffusion of adsorbates in mesoporous materials. Magn Reson Imaging 23:209–213

    Article  Google Scholar 

  • Valiullin R, Kärger J, Gläser R (2009) Correlating phase behaviour and diffusion in mesopores: perspectives revealed by pulsed field gradient NMR. Phys Chem Chem Phys 11(16):2833–2853

    Article  Google Scholar 

  • Velleman L, Shearer CJ, Ellis AV, Losic D, Voelcker NH, Shapter JG (2010) Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization. Nanoscale 2(9):1756–1761

    Article  Google Scholar 

  • Wallacher D, Kunzner N, Kovalev D, Knorr N, Knorr K (2004) Capillary condensation in linear mesopores of different shape. Phys Rev Lett 92(19):195704

    Article  Google Scholar 

  • Wu CC, Sailor MJ (2013) Selective functionalization of the internal and the external surfaces of mesoporous silicon by liquid masking. ACS Nano 7(4):3158–3167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kärger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Kärger, J., Valiullin, R. (2014). Mesopore Diffusion Within Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_22

Download citation

Publish with us

Policies and ethics