Skip to main content

A Simple Method for Measuring Lower Limb Stiffness in Hopping

  • Chapter
  • First Online:
Biomechanics of Training and Testing
  • 1513 Accesses

Abstract

Lower limb stiffness is of great of interest to the scientific and sporting communities, given its implication in sporting performance and in musculoskeletal injury risk. In the literature, lower limb stiffness has been extensively studied during hopping, as it constitutes a simple bouncing gait. Characterization of lower limb stiffness in hopping is commonly based on a biomechanical model called the “spring-mass model”. This model assimilates the whole-body to an oscillating system consisting of a mass supported by a single spring, which represents the mechanical behaviour of the lower limbs during the ground contact phase of hopping. The stiffness of the spring, referred to as “leg spring”, represents an overall stiffness of the musculoskeletal system of the lower limbs. In this chapter, we will describe the biomechanical aspects related to this concept of leg stiffness in hopping and we will present a simple method for measuring it. This method enables the calculation of leg stiffness from just the body mass of the individual and the contact and flight times during hopping, both of which may be obtained with simple technical equipment. This simple method may be particularly advantageous for assessing leg stiffness in a field environment, as well as in laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although vertical hopping may also be performed on one leg, we will only address aspects related to two-legged hopping in this chapter.

  2. 2.

    An elastic body refers to a deformable material body that returns to its original shape and size when the forces causing the deformation are removed.

  3. 3.

    The term “linear” means that the deformation of the spring is linearly proportional to the force applied.

  4. 4.

    Natural frequency is the frequency at which the spring-mass system oscillates freely, i.e. in the absence of any external force, once set into motion. This natural frequency depends on the mass and the stiffness of the system.

References

  • Arampatzis A, Schade F, Walsh M, Bruggemann GP (2001) Influence of leg stiffness and its effect on myodynamic jumping performance. J Electromyogr Kinesiol 11(5):355–364

    Article  CAS  PubMed  Google Scholar 

  • Austin GP, Tiberio D, Garrett GE (2003) Effect of added mass on human unipedal hopping at three frequencies. Percept Mot Skills 97(2):605–612

    Article  PubMed  Google Scholar 

  • Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Bobbert MF, Richard Casius LJ (2011) Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping. Philos Trans R Soc Lond B Biol Sci 366(1570):1516–1529

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosco C (1999) Strength assessment with the Bosco’s test. Italian Society of Sports Science, Rome, Italy

    Google Scholar 

  • Bosco C, Luhtanen P, Komi PV (1983) A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol Occup Physiol 50(2):273–282

    Article  CAS  PubMed  Google Scholar 

  • Brazier J, Bishop C, Simons C, Antrobus M, Read PJ, Turner AN (2014) Lower extremity stiffness: effects on performance and injury and implications for training. Strength Conditioning J 36(5):103–112

    Article  Google Scholar 

  • Bret C, Rahmani A, Dufour AB, Messonnier L, Lacour JR (2002) Leg strength and stiffness as ability factors in 100 m sprint running. J Sports Med Phys Fitness 42(3):274–281

    CAS  PubMed  Google Scholar 

  • Brughelli M, Cronin J (2008) A review of research on the mechanical stiffness in running and jumping: methodology and implications. Scand J Med Sci Sports 18(4):417–426

    Article  CAS  PubMed  Google Scholar 

  • Butler RJ, Crowell HP, Davis IM (2003) Lower extremity stiffness: implications for performance and injury. Clin Biomech 18(6):511–517

    Article  Google Scholar 

  • Carretero-Navarro G, Márquez G (2015) Effect of different loading conditions on leg stiffness during hopping at different frequencies. Sci Sports 31(2):e27–e31

    Article  Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39(1):174–179

    Article  CAS  PubMed  Google Scholar 

  • Cavagna GA, Franzetti P, Heglund NC, Willems P (1988) The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol 399:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh PR, Kram R (1985) Mechanical and muscular factors affecting the efficiency of human movement. Med Sci Sports Exerc 17(3):326–331

    CAS  PubMed  Google Scholar 

  • Chang YH, Roiz RA, Auyang AG (2008) Intralimb compensation strategy depends on the nature of joint perturbation in human hopping. J Biomech 41(9):1832–1839

    Article  PubMed  Google Scholar 

  • Chelly SM, Denis C (2001) Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc 33(2):326–333

    Article  CAS  PubMed  Google Scholar 

  • Dalleau G, Belli A, Bourdin M, Lacour JR (1998) The spring-mass model and the energy cost of treadmill running. Eur J Appl Physiol Occup Physiol 77(3):257–263

    Article  CAS  PubMed  Google Scholar 

  • Dalleau G, Belli A, Viale F, Lacour JR, Bourdin M (2004) A simple method for field measurements of leg stiffness in hopping. Int J Sports Med 25(3):170–176

    Article  CAS  PubMed  Google Scholar 

  • Dalleau G, Rahmani A, Verkindt C (2007) Relationship between power and musculotendinous stiffness in high level athletes. Sci Sports 22(2):110–116

    Article  Google Scholar 

  • Donoghue O, Steele L (2009) Acute effects of hopping with weighted vest on vertical stiffness. In: ISBS-Conference Proceedings Archive 1(1)

    Google Scholar 

  • Dutto DJ, Smith GA (2002) Changes in spring-mass characteristics during treadmill running to exhaustion. Med Sci Sports Exerc 34(8):1324–1331

    Article  PubMed  Google Scholar 

  • Farley CT, Blickhan R, Saito J, Taylor CR (1991) Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. J Appl Physiol 71(6):2127–2132

    Article  CAS  PubMed  Google Scholar 

  • Farley CT, Gonzalez O (1996) Leg stiffness and stride frequency in human running. J Biomech 29(2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Farley CT, Houdijk HH, Van Strien C (1985) Louie M (1998) Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol 85(3):1044–1055

    Article  Google Scholar 

  • Farley CT, Morgenroth DC (1999) Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech 32(3):267–273

    Article  CAS  PubMed  Google Scholar 

  • Ferris DP, Farley CT (1997) Interaction of leg stiffness and surfaces stiffness during human hopping. J Appl Physiol 82(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Flanagan EP, Galvin L, Harrison AJ (2008) Force production and reactive strength capabilities after anterior cruciate ligament reconstruction. J Athl Train 43(3):249–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Granata KP, Padua DA, Wilson SE (2002) Gender differences in active musculoskeletal stiffness. Part II. quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol 12(2):127–135

    Article  CAS  PubMed  Google Scholar 

  • Gray R, Start K, Glenross D (1962) A test of leg power. Res Q 33:44–50

    Google Scholar 

  • He JP, Kram R, McMahon TA (1991) Mechanics of running under simulated low gravity. J Appl Physiol 71(3):863–870

    Article  CAS  PubMed  Google Scholar 

  • Hébert-Losier K, Eriksson A (2014) Leg stiffness measures depend on computational method. J Biomech 47(1):115–121

    Article  PubMed  Google Scholar 

  • Heise GD, Martin PE (1998) “Leg spring” characteristics and the aerobic demand of running. Med Sci Sports Exerc 30(5):750–754

    Article  CAS  PubMed  Google Scholar 

  • Hobara H, Inoue K, Kobayashi Y, Ogata T (2014) A comparison of computation methods for leg stiffness during hopping. J Appl Biomech 30(1):154–159

    Article  PubMed  Google Scholar 

  • Hobara H, Inoue K, Muraoka T, Omuro K, Sakamoto M, Kanosue K (2010) Leg stiffness adjustment for a range of hopping frequencies in humans. J Biomech 43(3):506–511

    Article  PubMed  Google Scholar 

  • Hobara H, Inoue K, Omuro K, Muraoka T, Kanosue K (2011) Determinant of leg stiffness during hopping is frequency-dependent. Eur J Appl Physiol 111(9):2195–2201

    Article  PubMed  Google Scholar 

  • Hobara H, Kanosue K, Suzuki S (2007) Changes in muscle activity with increase in leg stiffness during hopping. Neurosci Lett 418(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Hobara H, Kimura K, Omuro K, Gomi K, Muraoka T, Iso S, Kanosue K (2008) Determinants of difference in leg stiffness between endurance- and power-trained athletes. J Biomech 41(3):506–514

    Article  PubMed  Google Scholar 

  • Hobara H, Muraoka T, Omuro K, Gomi K, Sakamoto M, Inoue K, Kanosue K (2009) Knee stiffness is a major determinant of leg stiffness during maximal hopping. J Biomech 42(11):1768–1771

    Article  PubMed  Google Scholar 

  • Hortobagyi T, DeVita P (2000) Muscle pre- and coactivity during downward stepping are associated with leg stiffness in aging. J Electromyogr Kinesiol 10(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • Joseph CW, Bradshaw EJ, Kemp J, Clark RA (2013) The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. J Appl Biomech 29(4):386–394

    Article  PubMed  Google Scholar 

  • Joyce D, Lewindon D (2016) Sports injury prevention and rehabilitation: integrating medicine and science for performance solutions. Routledge, New York

    Google Scholar 

  • Kerdok AE, Biewener AA, Mcmahon TA, Weyand PG, Herr HM (2002) Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol (1985) 92(2):469–478

    Article  Google Scholar 

  • Komi PV, Bosco C (1978) Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports 10(4):261–265

    CAS  PubMed  Google Scholar 

  • Komi PV, Gollhofer A (1997) Stretch reflex can have an important role in force enhancement during SSC-exercise. J Appl Biomech 13:451–460

    Article  Google Scholar 

  • Kuitunen S, Ogiso K, Komi PV (2011) Leg and joint stiffness in human hopping. Scand J Med Sci Sports 21(6):e159–e167

    Article  CAS  PubMed  Google Scholar 

  • Laffaye G, Bardy BG, Durey A (2005) Leg stiffness and expertise in men jumping. Med Sci Sports Exerc 37(4):536–543

    Article  PubMed  Google Scholar 

  • Lamontagne M, Kennedy MJ (2013) The biomechanics of vertical hopping: a review. Res Sports Med 21(4):380–394

    PubMed  Google Scholar 

  • McLachlan KA, Murphy AJ, Watsford ML, Rees S (2006) The interday reliability of leg and ankle musculotendinous stiffness measures. J Appl Biomech 22(4):296–304

    Article  PubMed  Google Scholar 

  • McMahon JJ, Comfort P, Pearson SJ (2012) Lower limb stiffness: effect on performance and training considerations. Strength Conditioning J 34(6):94–101

    Article  Google Scholar 

  • McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23(Suppl 1):65–78

    Article  PubMed  Google Scholar 

  • McMahon TA, Valiant G, Frederick EC (1987) Groucho running. J Appl Physiol 62(6):2326–2337

    Article  CAS  PubMed  Google Scholar 

  • Melvill Jones G, Watt DG (1971) Observations on the control of stepping and hopping movements in man. J Physiol 219(3):709–727

    Article  PubMed Central  Google Scholar 

  • Morin JB, Dalleau G, Kyrolainen H, Jeannin T, Belli A (2005) A simple method for measuring stiffness during running. J Appl Biomech 21(2):167–180

    Article  PubMed  Google Scholar 

  • Moritz CT, Farley CT (2003) Human hopping on damped surfaces: strategies for adjusting leg mechanics. Proc Biol Sci 270(1525):1741–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Moritz CT, Farley CT (2005) Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. J Exp Biol 208(Pt 5):939–949

    Article  PubMed  Google Scholar 

  • Moritz CT, Greene SM, Farley CT (2004) Neuromuscular changes for hopping on a range of damped surfaces. J Appl Physiol (1985) 96(5):1996–2004

    Article  Google Scholar 

  • Mrdakovic V, Ilic D, Vulovic R, Matic M, Jankovic N, Filipovic N (2014) Leg stiffness adjustment during hopping at different intensities and frequencies. Acta Bioeng Biomech 16(3):69–76

    PubMed  Google Scholar 

  • Pearson SJ, McMahon J (2012) Lower limb mechanical properties: determining factors and implications for performance. Sports Med 42(11):929–940

    Article  PubMed  Google Scholar 

  • Ranavolo A, Don R, Cacchio A, Serrao M, Paoloni M, Mangone M, Santilli V (2008) Comparison between kinematic and kinetic methods for computing the vertical displacement of the center of mass during human hopping at different frequencies. J Appl Biomech 24(3):271–279

    Article  PubMed  Google Scholar 

  • Rapoport S, Mizrahi J, Kimmel E, Verbitsky O, Isakov E (2003) Constant and variable stiffness and damping of the leg joints in human hopping. J Biomech Eng 125(4):507–514

    Article  PubMed  Google Scholar 

  • Samozino P, Morin JB, Hintzy F, Belli A (2008) A simple method for measuring force, velocity and power output during squat jump. J Biomech 41(14):2940–2945

    Article  PubMed  Google Scholar 

  • Serpell BG, Ball NB, Scarvell JM, Smith PN (2012) A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. J Sports Sci 30(13):1347–1363

    Article  PubMed  Google Scholar 

  • Seyfarth A, Blickhan R, Van Leeuwen JL (2000) Optimum take-off techniques and muscle design for long jump. J Exp Biol 203(Pt 4):741–750

    CAS  PubMed  Google Scholar 

  • Seyfarth A, Friedrichs A, Wank V, Blickhan R (1999) Dynamics of the long jump. J Biomech 32(12):1259–1267

    Article  CAS  PubMed  Google Scholar 

  • Voigt M, Chelli F, Frigo C (1998a) Changes in the excitability of soleus muscle short latency stretch reflexes during human hopping after 4 weeks of hopping training. Eur J Appl Physiol Occup Physiol 78(6):522–532

    Article  CAS  PubMed  Google Scholar 

  • Voigt M, Dyhre-Poulsen P, Simonsen EB (1998b) Modulation of short latency stretch reflexes during human hopping. Acta Physiol Scand 163(2):181–194

    Article  CAS  PubMed  Google Scholar 

  • Williams DS, 3rd, McClay IS, Hamill J (2001) Arch structure and injury patterns in runners. Clin Biomech 16(4):341–347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Dalleau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caderby, T., Dalleau, G. (2018). A Simple Method for Measuring Lower Limb Stiffness in Hopping. In: Morin, JB., Samozino, P. (eds) Biomechanics of Training and Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-05633-3_6

Download citation

Publish with us

Policies and ethics