Skip to main content

Using Integrated Vision Systems: Three Gears and Leap Motion, to Control a 3-finger Dexterous Gripper

  • Conference paper
Recent Advances in Automation, Robotics and Measuring Techniques

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 267))

Abstract

In this paper we have tested two vision based technologies as possible control interfaces for dexterous 3-finger gripper. Both qualitative analysis and quantitative comparison with sensor glove are presented. We also provide some ready to use solutions to directly control movements of the gripper and support operator in difficult manipulation tasks by applying gestures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Onda, H., Suehiro, T.: Motion planning and design of a dexterous gripper-graspability, manipulability, and virtual gripper. In: Proc. IIEEE/RSJ Int. Conference on. Intelligent Robots and Systems, vol. 1 (1998)

    Google Scholar 

  2. Zubrycki, I., Granosik, G.: Test setup for multi-finger gripper control based on robot operating system (ROS). In: Proc. of 9th Int. Workshop on Robot Motion and Control, Wsowo, Poland, July 3-5, pp. 135–140 (2013)

    Google Scholar 

  3. Zubrycki, I., Granosik, G.: Grip recognition and control of 3-finger gripper with sensor glove. In: Proc. of Int. Conference on Robotics and Artificial Intelligence. Problems and Perspective (RAIPAP 2013), Brest, Belarus, November 4-6 (2013) (to be pulished)

    Google Scholar 

  4. Lomas, N.G.: 1.2 Billion Smartphones, Tablets To Be Bought Worldwid. In: 2013; 821 Million This Year: 70

    Google Scholar 

  5. Pietrasik, M., Arychta, D.: Multimedial methods for control of robots. In: Postpy Robotyki (part 1), Warszawa, pp. 331–338 (2006) (in Polish)

    Google Scholar 

  6. Zhai, S., et al.: Foundational Issues in Touch-Screen Stroke Gesture Design-An Integrative Review. Foundations and Trends in Human-Computer Interaction 5(2), 97–205 (2012)

    Article  Google Scholar 

  7. Dhawale, P., Masoodian, M., Rogers, B.: Bare-hand 3D gesture input to interactive systems. In: Proc. of the 7th ACM SIGCHI New Zealand Chapter’s International Conference on Computer-Human Interaction: Design Centered HCI, pp. 25–32 (July 6, 2006)

    Google Scholar 

  8. Norman, D.A., Nielsen, J.: Gestural interfaces: a step backward in usability. Interactions 17(5), 46–49 (2010)

    Article  Google Scholar 

  9. Ruttum, M., Parikh, S.P.: Can robots recognize common Marine gestures? In: IEEE 42nd Southeastern Symposium on System Theory (SSST) (2010)

    Google Scholar 

  10. Nielsen, M., et al.: A procedure for developing intuitive and ergonomic gesture interfaces for man-machine interaction. In: Proc. of the 5th International Gesture Workshop, pp. 1–12 (March 2003)

    Google Scholar 

  11. Nacenta, M.A., Kamber, Y., Qiang, Y., Kristensson, P.O.: Memorability of Pre-designed and User-defined Gesture Sets. In: Proc.s of the 31st Annual ACM SIGCHI Conference on Human factors in Computing Systems, CHI 2013 (2013)

    Google Scholar 

  12. Wigdor, D., Wixon, D.: Brave NUI world: designing natural user interfaces for touch and gesture, pp. 81–95. Elsevier (2011)

    Google Scholar 

  13. Williamson, J., Murray-Smith, R.: Audio feedback for gesture recognition. Technical Report TR-2002-127, Dept. Computing Science, University of Glasgow (2002)

    Google Scholar 

  14. Weichert, F., et al.: Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors 13(5), 6380–6393 (2013)

    Article  Google Scholar 

  15. https://forums.leapmotion.com/forum/general-discussion/general-discussion-forum/130-processing-where-it-is-computed

  16. https://www.sparkfun.com/datasheets/Sensors/Flex/flex22.pdf

  17. Norman, D.A.: Natural user interfaces are not natural. Interactions 17(3), 6–10 (2010)

    Article  Google Scholar 

  18. Hasanuzzaman, M., et al.: Real-time vision-based gesture recognition for human robot interaction. In: IEEE International Conference on Robotics and Biomimetics, ROBIO 2004, pp. 413–418 (August 22, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Zubrycki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zubrycki, I., Granosik, G. (2014). Using Integrated Vision Systems: Three Gears and Leap Motion, to Control a 3-finger Dexterous Gripper. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-319-05353-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05353-0_52

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05352-3

  • Online ISBN: 978-3-319-05353-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics