Skip to main content

On the Effective Envelopes for Fluid Queues with Gaussian Input

  • Conference paper
Distributed Computer and Communication Networks (DCCN 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 279))

  • 617 Accesses

Abstract

Thanks to their flexibility and compact characterization, Gaussian processes have emerged as popular models to describe the traffic dynamics in a wide class of the modern telecommunication networks. A relatively new characterization of traffic flows is based on the effective envelopes, which represent a probabilistic generalization of theĀ arrival curve of Network Calculus. In this paper, we analyse the effective envelopes for a general Gaussian process and use these results to derive non-asymptotic performance bounds for a fluid queuing system. To highlight the effectiveness of the proposed approach, numerical results are shown taking into account heterogeneous traffic flows as well as different correlation structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addie, R., Mannersalo, P., Norros, I.: Most probable paths and performance formulae for buffers with Gaussian input traffic. Eur. Trans. Telecommun. 13(3), 183ā€“196 (2002)

    ArticleĀ  Google ScholarĀ 

  2. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for Differentiated Service. RFC 2475 (Informational), December 1998. Updated by RFC 3260

    Google ScholarĀ 

  3. Braden, R., Clark, D., Shenker, S.: Integrated services in the internet architecture: an overview. RFC 1633 (Informational), June 1994

    Google ScholarĀ 

  4. Debicki, K.: A note on LDP for supremum of Gaussian processes over infinite horizon. Stat. Probab. Lett. 44(3), 211ā€“219 (1999)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  5. Duffield, N.G., Oā€™connell, N.: Large deviations and overflow probabilities for the general single-server queue, with applications. Math. Proc. Cambridge Philos. Soc. 118, 363ā€“374 (1995)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  6. Erramilli, A., Narayan, O., Willinger, W.: Experimental queueing analysis with long-range dependent packet traffic. IEEE/ACM Trans. Netw. 4(2), 209ā€“223 (1996)

    ArticleĀ  Google ScholarĀ 

  7. Lewis, J.T., Duffy, K., Sullivan, W.G.: Logarithmic asymptotics for the supremum of a stochastic process. Ann. Appl. Probab. 13(2), 430ā€“445 (2003)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. Kelly, F.P.: Notes on effective bandwidths. In: Kelly, F.P., Zachary, S., Ziedins, I. (eds.) Stochastic Networks: Theory and Applications, Royal Statistical Society Lecture Notes Series, pp. 141ā€“168. Oxford University Press, Oxford (1996)

    Google ScholarĀ 

  9. Kulkarni, V., Rolski, T.: Fluid model driven by an Ornstein-Uhlenbeck process. Probab. Eng. Inf. Sci. 8, 403ā€“417 (1994)

    ArticleĀ  Google ScholarĀ 

  10. Le Boudec, J.-Y., Thiran, P.: Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Springer, Heidelberg (2001)

    BookĀ  Google ScholarĀ 

  11. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1ā€“15 (1994)

    ArticleĀ  Google ScholarĀ 

  12. Li, Ch., Burchard, A., Liebeherr, J.: A network calculus with effective bandwidth. IEEE/ACM Trans. Netw. 15(6), 1442ā€“1453 (2007)

    ArticleĀ  Google ScholarĀ 

  13. Mandjes, M.: Large Deviations for Gaussian Queues: Modelling Communication Networks. Wiley, New York (2007)

    BookĀ  Google ScholarĀ 

  14. Norros, I.: On the use of fractional brownian motion in the theory of connectionless networks. IEEE J. Sel. A. Commun. 13(6), 953ā€“962 (2006)

    ArticleĀ  Google ScholarĀ 

  15. Piterbarg, V.I.: Asymptotic Methods in the Theory of Gaussian Processes and Fields. Memoirs of the American Mathematical Society, Providence (1996)

    MATHĀ  Google ScholarĀ 

  16. Rizk, A., Fidler, M.: Sample path bounds for long memory FBM traffic. In: Proceedings of the 29th Conference on Information Communications, INFOCOMā€™10, pp. 61ā€“65. IEEE Press, Piscataway (2010)

    Google ScholarĀ 

  17. Rizk, A., Fidler, M.: Non-asymptotic end-to-end performance bounds for networks with long range dependent FBM cross traffic. Comput. Netw. 56(1), 127ā€“141 (2012)

    ArticleĀ  Google ScholarĀ 

  18. Taqqu, M.S., Willinger, W., Sherman, R.: Proof of a fundamental result in self-similar traffic modeling. SIGCOMM Comput. Commun. Rev. 27(2), 5ā€“23 (1997)

    ArticleĀ  Google ScholarĀ 

  19. Willinger, W., Taqqu, M.S., Leland, W.E., Wilson, D.V.: Self-similarity in high-speed packet traffic: analysis and modeling of Ethernet traffic measurements. Stat. Sci. 10(1), 67ā€“85 (1995)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This work is partially supported by the Program of Strategy development of Petrozavodsk State University in the framework of the research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pagano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lukashenko, O., Morozov, E., Pagano, M. (2014). On the Effective Envelopes for Fluid Queues with Gaussian Input. In: Vishnevsky, V., Kozyrev, D., Larionov, A. (eds) Distributed Computer and Communication Networks. DCCN 2013. Communications in Computer and Information Science, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-05209-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05209-0_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05208-3

  • Online ISBN: 978-3-319-05209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics