Skip to main content

Application of MicroRNA in the Treatment and Diagnosis of Cervical Cancer

  • Chapter
  • First Online:
Book cover MicroRNA Targeted Cancer Therapy

Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules of 20–23 nucleotides that regulate gene expression by binding to complementary mRNA sequences. Aberrant miRNA expression is implicated in carcinogenesis and malignancy of cancer. miRNAs involved in carcinogenesis are broadly classified into oncogenic and tumor suppressor miRNAs, and overexpression of oncogenic miRNAs and decreased expression of tumor suppressor miRNAs are found in cancer cells. Recent studies using miRNAs with different expression patterns between normal and cancer tissues have proposed use of miRNAs as biomarkers for cancer diagnosis and as treatment targets. In cervical cancer, miRNAs may be useful for onset detection, diagnosis and treatment. Here, we review the potential clinical applications of miRNAs for diagnosis and as a therapeutic strategy in cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  2. Banno K, Yanokura M, Kisu I, Yamagami W, Susumu N, Aoki D (2013) MicroRNAs in endometrial cancer. Int J Clin Oncol 18:186–192

    Article  PubMed  CAS  Google Scholar 

  3. Yanokura M, Banno K, Kobayashi Y, Kisu I, Ueki A, Ono A, Masuda K, Nomura H, Hirasawa A, Susumu N, Aoki D (2010) MicroRNA and endometrial cancer: roles of small RNAs in human tumors and clinical applications. Oncol Lett 1:935–940

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Wilson CM, Tobin S, Young RC (2004) The exploding worldwide cancer burden: the impact of cancer on women. Int J Gynecol Cancer 14:1–11

    Article  PubMed  CAS  Google Scholar 

  6. Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, Estelles A (2012) Role of microRNAs in gynecological pathology. Curr Med Chem 19:2406–2413

    Article  PubMed  CAS  Google Scholar 

  7. Adegoke O, Kulasingam S, Virnig B (2012) Cervical cancer trends in the United States: a 35-year population-based analysis. J Womens Health (Larchmt) 21:1031–1037

    Article  Google Scholar 

  8. Lee Y, Kim M, Han J (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Yi R, Qin Y, Macara IG (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  PubMed  CAS  Google Scholar 

  11. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wang J, Wang Q, Liu H, Hu B, Zhou W, Cheng Y (2010) MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett 297:137–143

    Article  PubMed  CAS  Google Scholar 

  13. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    Article  PubMed  CAS  Google Scholar 

  14. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  PubMed  CAS  Google Scholar 

  15. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Wong KY, Yu L, Chim CS (2011) DNA methylation of tumor suppressor miRNA genes: a lesson from the miR-34 family. Epigenomics 3:83–92

    Article  PubMed  CAS  Google Scholar 

  17. Fu X, Han Y, Wu Y, Zhu X, Lu X, Mao F, Wang X, He X, Zhao Y, Zhao Y (2001) Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Biomarkers Definitions Working Group. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  18. Wang B, Zhang Q (2012) The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol 138:1659–1666

    Article  PubMed  CAS  Google Scholar 

  19. Takamizawa J, Konishi H, Yanagisawa K (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki S, Yokobori T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Miyazaki T, Kato H, Kuwano H (2012) CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 28:465–472

    PubMed  CAS  Google Scholar 

  21. Mirnezami AH, Pickard K, Zhang L, Primrose JN, Packham G (2009) MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol 35:339–347

    Article  PubMed  CAS  Google Scholar 

  22. Krützfeldt J, Rajewsky N, Braich R (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  23. Meng F, Henson R, Lang M (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129

    Article  PubMed  CAS  Google Scholar 

  24. Ru P, Steele R, Hsueh EC, Ray RB (2011) Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2:720–727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Chabot S, Pelofy S, Paganin-Gioanni A, Teissie J, Golzio M (2011) Electrotransfer of RNAi-based oligonucleotides for oncology. Anticancer Res 31:4083–4089

    PubMed  CAS  Google Scholar 

  26. Clifford G, Franceschi S, Diaz M, Muñoz N, Villa LL (2006) HPV type distribution in women with and without cervical neoplastic diseases. Vaccine 24:S3–26, S3–34

    Article  PubMed  Google Scholar 

  27. Huibregtse JM, Scheffner M, Howley PM (1993) Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13:4918–4927

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH, Enerly E, Johnsen H, Buganim Y, Solomon H, Goldstein I, Madar S, Goldfinger N, Borresen-Dale AL, Ginsberg D, Harris CC, Pilpel Y, Oren M, Rotter V (2008) p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4:229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Bueno MJ, Gomez DC, Laresgoiti U, Fernandez-Piqueras J, Zubiaga AM, Malumbres M (2010) Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 30:2983–2995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 92:690–698

    Article  PubMed  Google Scholar 

  31. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3:2557

    Article  CAS  Google Scholar 

  32. Li Y, Wang F, Xu J, Ye F, Shen Y, Zhou J, Lu W, Wan X, Ma D, Xie X (2011) Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV related target genes for miR-29. J Pathol 224:484–495

    Article  PubMed  CAS  Google Scholar 

  33. Rao Q, Zhou H, Peng Y, Li J, Lin Z (2012) Aberrant microRNA expression in human cervical carcinomas. Med Oncol 29:1242–1248

    Article  PubMed  CAS  Google Scholar 

  34. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  35. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, le Sage C, Agami R, Snijders PJ, Steenbergen RD (2010) Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 9:167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Herr I, Pfitzenmaier J (2006) Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. Lancet Oncol 7:425–430

    Article  PubMed  CAS  Google Scholar 

  38. Bromberg-White JL, Meyers C (2003) Comparison of the basal and glucocorticoid-inducible activities of the upstream regulatory regions of HPV18 and HPV31 in multiple epithelial cell lines. Virology 306:197–202

    Article  PubMed  CAS  Google Scholar 

  39. Shi M, Du L, Liu D, Qian L, Hu M, Yu M, Yang Z, Zhao M, Chen C, Guo L, Wang L, Song L, Ma Y, Guo N (2012) Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol 228:148–157

    Article  PubMed  CAS  Google Scholar 

  40. Osaki M, Takeshita F, Ochiya T (2008) MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers 13:658–670

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouji Banno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banno, K. et al. (2014). Application of MicroRNA in the Treatment and Diagnosis of Cervical Cancer. In: Sarkar, F. (eds) MicroRNA Targeted Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-05134-5_7

Download citation

Publish with us

Policies and ethics