Skip to main content

Sensorimotor Coordination in a Humanoid Robot: Building Intelligence on the iCub

  • Chapter
  • First Online:
Bioinspired Approaches for Human-Centric Technologies

Abstract

Sensorimotor coordination in humanoid robots is the key to accomplish realistic human behavior. Paradigmatic tasks in sensorimotor coordination include force and impedance control, whole-body coordination during physical interaction with the environment, point-to-point reaching movements, and grasping visually identified objects. To tackle these problems a variety of sensors and methods have to be integrated, including vision, force and touch, hand-coded models, and machine learning. This requires a careful balance of the a priori design effort in order to properly manage the complexity of data collection for learning and the overall performance of the robotic system. In this chapter we treat the implementation of these techniques on the well-known iCub humanoid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    Article  CAS  PubMed  Google Scholar 

  • Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology, vol. II, motor control. American Physiological Society, Bethesda, MD, pp 1449–1480

    Google Scholar 

  • Barequet G, Har-Peled S (2001) Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J Algorithm 38:91–109

    Article  Google Scholar 

  • Bjorck A (1996) Numerical methods for least squares problems. Society for Industrial Mathematics, Philadelphia, PA

    Book  Google Scholar 

  • Chalon M, Grebenstein M, Wimboeck T, Hirzinger G (2010) The thumb: guidelines for a robotic design. In: IEEE/RSJ international conference on intelligent robots and systems

    Google Scholar 

  • Cutkosky MR, Howe RD (1990) Human grasp choice and robotic grasp analysis. In: Venkataraman ST, Iberall T (eds) Dexterous robot hands. Springer, New York, NY

    Google Scholar 

  • Dallali H, Mosadeghzad M, Medrano-CerdaGA, Docquier N, Kormushev P, Tsagarakis N, Li Z, Caldwell D (2013) Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In: International conference on mechatronics, Vicenza

    Google Scholar 

  • De Lasa M, Hertzmann A (2009) Prioritized optimization for task-space control. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, vol 3, Piscataway, NJ, pp 5755–5762

    Google Scholar 

  • Deo AS, Walker ID (1992) Robot subtask performance with singularity robustness using optimal damped least-squares. In: IEEE international conference on robotics and automation

    Google Scholar 

  • Eljaik J, Li Z, Randazzo M, Parmiggiani A, Metta G, Tsagarakis N, Nori F (2013) Quantitative evaluation of standing stabilization using stiff and compliant actuators. In: Robotics: science and systems 2013, Berlin, 24–28 June

    Google Scholar 

  • Featherstone R, Orin DE (2008) Dynamics—chapter 2. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin

    Google Scholar 

  • Fitzpatrick P, Metta G, Natale L (2008) Towards long-lived robot genes. Robot Auton Syst 56(1):29–45

    Article  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  • Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford J (eds) Perceiving, acting and knowing: toward an ecological psychology. Lawrence Erlbaum, Hillsdale, NJ, pp 67–82

    Google Scholar 

  • Gijsberts A, Metta G (2011) Incremental learning of robot dynamics using random features. In: IEEE international conference on robotics and automation, Shanghai, 9–13 May

    Google Scholar 

  • Hersch M, Billard AG (2008) Reaching with multi-referential dynamical systems. Auton Robot 25(1–2):71–83

    Article  Google Scholar 

  • Hirschmuller H (2008) Stereo processing by semiglobal matching and mutual information, TPAMI

    Google Scholar 

  • Ihrke CA, Parsons AH, Mehling JS, Griffith BK. Planar torsion spring. Patent, June 2010

    Google Scholar 

  • Lallee S, Yoshida E, Nori F, Natale L, Metta G, Warneken F, Dominey PF (2010) Human-robot cooperation based on interaction learning. In: Sigaud O, Peters J (eds) From motor learning to interaction learning in robots, vol 264. Springer, Heidelberg

    Google Scholar 

  • Lee HY, Yi BJ, Choi Y (2007) A realistic joint limit algorithm for kinematically redundant manipulators. In: IEEE international conference on control, automation and systems

    Google Scholar 

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of IJCAI, pp 674–679

    Google Scholar 

  • Metta G (2010) The iCub website. http://www.iCub.org

  • Metta G, Vernon D, Sandini G (2005) The RobotCub approach to the development of cognition: implications of emergent systems for a common research agenda in epigenetic robotics. In: 5th epigenetic robotics workshop, Nara, July 2005

    Google Scholar 

  • Metta G, Natale L, Nori F et al (2010) The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw 23:1125–1134

    Article  PubMed  Google Scholar 

  • Miyamoto H, Schaal S, Gandolfo F, Gomi H, Koike Y, Osu R, Nakano E, Wada Y, Kawato M (1996) A kendama learning robot based on bi-directional theory. Neural Netw 9:1281–1302

    Article  PubMed  Google Scholar 

  • Nguyen-Tuong D, Peters J, Seeger M (2008) Computed torque control with nonparametric regression models. In: American control conference (ACC 2008), 2008 June, pp 212–217

    Google Scholar 

  • Parmiggiani A, Maggiali M, Natale L, Nori F, Schmitz A, Tsagarakis N, Santos-Victor J, Becchi F, Sandini G, Metta G (2012a) The design of the iCub humanoid robot. Int J HR 9(4):1–24

    Google Scholar 

  • Parmiggiani A, Metta G, Tsagarakis N (2012b) The mechatronic design of the new legs of the iCub robot. In: IEEE-RAS international conference on humanoid robots (HU-MANOIDS2012), Osaka, Japan, 29 November–1 December

    Google Scholar 

  • Pattacini U, Nori F, Natale L, Metta G, Sandini G (2010) An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In: IEEE/RSJ international conference on intelligent robots and systems, Taipei, 18–22 October, pp 1668–1674

    Google Scholar 

  • Peters J, Mistry M, Udwadia FE, Nakanishi J, Schaal S (2007) A unifying framework for robot control with redundant DOFs. Auton Robot 24:1–12

    Article  Google Scholar 

  • Rabbani T, van den Heuvel F, Vosselmann G (2006) Segmentation of point clouds using smoothness constraint. In: ISPRS commission V symposium ‘Image Engineering and Vision Metrology’

    Google Scholar 

  • Radu BR (2009) Semantic 3d object maps for everyday manipulation in human living environments, Ph.D. dissertation, Computer Science department, Technische Universität München, Germany

    Google Scholar 

  • Rahimi A, Recht B (2008) Random features for large-scale kernel machines. Adv Neural Inf Process Syst 20:1177–1184

    Google Scholar 

  • Roa M, Argus M, Leidner D, Borst C, Hirzinger G (2012) Power grasp planning for anthropomorphic robot hands. In: IEEE international conference on robotics and automation

    Google Scholar 

  • Robotran webpage (2012) http://www.robotran.be

  • Sciavicco L, Siciliano B (2005) Modelling and control of robot manipulators, 2nd edn, Advanced text-books in control and signal processing. Springer, London

    Google Scholar 

  • Sentis L, Khatib O (2005) Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int J HR 2:505–518

    Google Scholar 

  • The Orocos website. http://www.orocos.org/kdl

  • Tilley AR (2002) The measure of man & woman: human factors in design. Wiley Interscience, New York, NY

    Google Scholar 

  • Tsagarakis NG, Metta G, Sandini G et al (2007) iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Adv Robot 21(10):1151–1175

    Article  Google Scholar 

  • Tsagarakis N, Li Z, Saglia J, Caldwell D (2011) The design of the lower body of the compliant humanoid robot cCub. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), May, pp 2035–2040

    Google Scholar 

  • Vernon D, Metta G, Sandini G (2007) A survey of cognition and cognitive architectures: implications for the autonomous development of mental capabilities in computational systems. IEEE transactions on evolutionary computation, special issue on AMD, vol 11, April

    Google Scholar 

  • Villani L, De Shutteer J (2008) Force control—chapter 7. In: Sicilian B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin

    Google Scholar 

  • von Hofsten C (2004) An action perspective on motor development. Trends Cogn Sci 8:266–272

    Article  Google Scholar 

  • Wätcher A, Biegler LT (2006) On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    Article  Google Scholar 

  • Yoshikawa T (1985) Manipulability of robotic mechanisms. Int J Robotics Res 4(2):3–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Natale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Natale, L., Nori, F., Parmiggiani, A., Metta, G. (2014). Sensorimotor Coordination in a Humanoid Robot: Building Intelligence on the iCub. In: Cingolani, R. (eds) Bioinspired Approaches for Human-Centric Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-04924-3_6

Download citation

Publish with us

Policies and ethics