Skip to main content

Design of Advanced GPR Equipment for Civil Engineering Applications

  • Chapter
  • First Online:
Civil Engineering Applications of Ground Penetrating Radar

Abstract

This chapter describes the issues to be addressed in the design of Ground Penetrating Radar equipment dedicated to civil engineering applications. Radar is well known for its ability to detect aircraft, ships, vehicles, birds, rainstorms and other above-ground objects. It relies for its operation on the transmission of electro-magnetic energy, usually in the form of a pulse, and the detection of the small amount of energy that is reflected from the target. The round-trip transit time of the pulse and its reflection provide range information on the target. The application of radar in the detection of buried objects is quite old; there are details of such work dating back to 1910, with the first pulsed experiments reported in 1926 when the depths of rock strata were determined by time-of-flight methods. The design of effective Ground Penetrating Radars requires solutions to technical challenges in three major areas:

  • Radio Frequency system design.

  • Antenna design.

  • Data analysis.

Hence, this chapter reviews the commonly available GPR system architectures and summarises main design challenges to build an effective tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The data may be gathered either with a pulsed or a swept frequency GPR, in the latter case \(T\left( t \right)\) is meant as an equivalent trace in the “synthetic” time domain.

  2. 2.

    E.g. let us think of an unequally dense, or ‘patchy’ fog.

References

  • Benedetto, A.: Theoretical approach to electromagnetic monitoring of road pavement. In Proceedings of X International Conference on Ground Penetrating Radar, Delft, The Netherlands (2004)

    Google Scholar 

  • Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  • Chan, W.C., Stewart, R.R.: 3-D f-k filtering. CREWES Res. Rep. 6, 15/1–15/7 (1994)

    Google Scholar 

  • Chew, W.C.: Waves and Fields in Inhomogeneous Media. Institute of Electrical and Electronics Engineers, Piscataway, NJ (1995)

    Google Scholar 

  • Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Conyers, L.B.: Ground Penetrating Radar for Archaeology. AltaMira Press, Lanham (2004)

    Google Scholar 

  • Daniels, D.J.: Ground Penetrating Radar, 2nd edn. IEEE press, New Jersey (2004)

    Book  Google Scholar 

  • Devaney, A.J.: Inverse-scattering theory within the Rytov approximation. Opt. Lett. 6(8), 374–376 (1981)

    Article  Google Scholar 

  • Di Lorenzo, R.: Trading Systems: Theory and Immediate Practice. Springer, Berlin (2013). ISBN 978-88-470-2706-0

    Book  Google Scholar 

  • Giannopoulos, A.: GprMax2D V 1.5 (Electromagnetic simulator for Ground Probing Radar, the software is available at www.gprmax.org) (2003)

  • Goodman, D., Piro, S.: GPR Remote Sensing in Archaeology. Springer, New York (2013)

    Book  Google Scholar 

  • Grasmueck, M., Weger, R., Horstmeyer, H.: How dense is dense enough for a “real” 3D GPR survey?, society of exploration geophysicists. In: 73nd Annual International Meeting, Expanded Abstracts, pp. 1180–1183 (2003)

    Google Scholar 

  • Grasmueck, M., Weger, R., Horstmeyer, H.: Full-resolution 3D GPR imaging. Geophysics 70(1), K12–K19 (2005)

    Article  Google Scholar 

  • Hugenschmidt, J., Loser, R.: Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 41(4), 785–792 (2008). doi:10.1617/s11527-007-9282-5

  • Jol, H.: Ground Penetrating Radar: Theory and Applications. Elsevier, Amsterdam (2009)

    Google Scholar 

  • Kim, J.K., Cho, S.J., Yi, M.J.: Removal of ringing noise in GPR data by signal processing. Geosci. J. 11(1), 75–81 (2007)

    Article  Google Scholar 

  • Lesselier, D., Duchene, B.: Wavefield inversion of objects in stratified environments: from back-propagation schemes to full solutions. In: Stone, R. (ed.) Review of Radio Science 1993–1996. Oxford University Press, Oxford (1996)

    Google Scholar 

  • Leucci, G., Masini, N., Persico, R., Soldovieri, F.: GPR and sonic tomography for structural restoration: the case of the Cathedral of Tricarico. J. Geophys. Eng. 8, S76–S92 (2011)

    Article  Google Scholar 

  • Liseno, A., Tartaglione, F., Soldovieri, F.: Shape reconstruction of 2D buried objects under a Kirchhoff approximation. IEEE Geosci. Remote Sens. Lett. 1(2), 118–121 (2004)

    Article  Google Scholar 

  • Manacorda, G., Miniati, M.: An easy way of checking impulsive GPR performance. In: Proceedings of VIII International Conference on Ground Penetrating Radar, Gold Coast, Australia (2000)

    Google Scholar 

  • Manacorda, G., Simi, A., Benedetto, A.: Bridge deck survey with high resolution ground penetrating radar. In: 14th International Conference on Ground Penetrating Radar, GPR2012, Shanghai, China (2012)

    Google Scholar 

  • Meincke, P.: Linear GPR inversion for lossy soil and a planar air-soil interface. IEEE Trans. Geosci. Remote Sens. 39(12), 2713–2721 (2001)

    Article  Google Scholar 

  • Parrillo, R., Roberts, R. Haggan, A.: Bridge deck condition assessment using Ground Penetrating Radar. ECNDT T.4.2.5 (2006)

    Google Scholar 

  • Parrini, F., Persico, R., Pieraccini, M., Spinetti, A., Macaluso, G., Fratini, M., Dei, D., Manacorda, G.: A reconfigurable stepped frequency GPR (GPR-R). In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium IGARSS 2011, Vancouver, Canada (2011)

    Google Scholar 

  • Persico, R.: On the role of measurement configuration in contactless GPR data processing by means of linear inverse scattering. IEEE Trans. Antennas Propag. 54(7), 2062–2071 (2006)

    Article  Google Scholar 

  • Persico, R.: Introduction to Ground Penetrating Radar: Inverse Scattering and data processing. Wiley, New York (2014). ISBN 9781118305003

    Book  Google Scholar 

  • Persico, R., Prisco, G.: A reconfigurative approach for SF-GPR prospecting. IEEE Trans. Antennas Propag. 56(8), 2673–2680 (2008)

    Article  Google Scholar 

  • Persico, R., Leucci, G., Matera, L., Ciminale, M., Dei, D., Parrini, F., Pieraccini, M.: Applications of a reconfigurable stepped frequency GPR in the Chapel of the Holy Spirit, Lecce (Italy). In: Proceedings of VII International Workshop on Advanced Ground Penetrating Radar, Nantes, France, 3–5 July 2013

    Google Scholar 

  • Persico, R., Sala, J.: The problem of the investigation domain subdivision in 2D linear inversions for large scale GPR data. IEEE Geosci. Remote Sens. Lett. (2014). doi:10.1109/LGRS.2013.2290008 (in print)

  • Persico, R., Soldovieri, F.: One-dimensional inverse scattering with a Born model in a three-layered medium. J. Opt. Soc. Am. Part A 21(1), 35–45 (2004)

    Article  MathSciNet  Google Scholar 

  • Persico, R., Soldovieri, F.: Effects of the background removal in linear inverse scattering. IEEE Trans. Geosci. Remote Sens. 46(4), 1104–1114 (2008)

    Article  Google Scholar 

  • Persico, R., Soldovieri, F., Pierri, R.: Convergence properties of a quadratic approach to the inverse scattering problem. J. Opt. Soc. Am. Part A 19(12), 2424–2428 (2002)

    Article  Google Scholar 

  • Persico, R., Bernini, R., Soldovieri, F.: On the configuration of the measurements in inverse scattering from buried objects under the distorted Born approximation. IEEE Trans. Antennas Propag. 53(6), 1875–1886 (2005)

    Article  Google Scholar 

  • Persico, R., Romano, N., Soldovieri, F.: Design of a balun for a bow tie antenna in reconfigurable ground penetrating radar systems. Prog. Electromagnet. Res C. 18, 123–135 (2011)

    Article  Google Scholar 

  • Persico, R., Ciminale, M., Matera, L.: A new reconfigurable stepped frequency GPR system, possibilities and issues; applications to two different Cultural Heritage Resources. Near Surf. Geophys. 12, 793–801 (2014). doi:10.3997/1873-0604.2014035

  • Pieraccini, M., Noferini, L., Mecatti, D., Atzeni, C., Persico, R., Soldovieri, F.: Advanced processing techniques for step-frequency continuous-wave penetrating radar: the case study of “Palazzo Vecchio” Walls (Firenze, Italy). Res. Nondestr. Eval. 17, 71–83 (2006)

    Article  Google Scholar 

  • Prisco, G., Persico, R.: Reconfigurable stepped frequency GPR systems. In: 12th International Conference on Ground Penetrating Radar, GPR2008, Birmingham, UK (2008)

    Google Scholar 

  • Qin, H.H., Cakoni, F.: Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem. Inverse Prob. 27, 1–17 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, R.L., Daniels, J.J.: Analysis of GPR polarization phenomena. J. Environ. Eng. Geophys. 1, 139–157 (1996)

    Article  Google Scholar 

  • Roqueta, G., Jofre L., Feng, M.: Microwave Nondestructive evaluation of corrosion in reinforced concrete structures. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 787–791 (2011)

    Google Scholar 

  • Sala, J., Linford, N.: Processing stepped frequency continuous wave GPR systems to obtain maximum value from archaeological data sets. Near Surf. Geophys. 10, 3–10 (2012)

    Article  Google Scholar 

  • Sandmeier K.J.: Reflexw 3.0 manual Sandmeier Software ZipserStrabe1 D-76227 Karlsruhe Germany (2003)

    Google Scholar 

  • Schneider, W.A.: Integral formulation for migration in two and three dimensions. Geophysics 43(1), 49–76 (1978)

    Article  Google Scholar 

  • Sheriff, R.E.: Nomogram for fresnel-zone calculation. Geophysics 45(5), 968–972 (1980)

    Article  Google Scholar 

  • Stolt, R.H.: Migration by fourier transform. Geophysics 43(1), 23–48 (1978)

    Article  Google Scholar 

  • Utsi, E.: The shrine of Edward the confessor: a study in multi-frequency GPR investigation. Near Surf. Geophys. 10, 65–75 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Manacorda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manacorda, G., Persico, R., Scott, H.F. (2015). Design of Advanced GPR Equipment for Civil Engineering Applications. In: Benedetto, A., Pajewski, L. (eds) Civil Engineering Applications of Ground Penetrating Radar. Springer Transactions in Civil and Environmental Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-04813-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04813-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04812-3

  • Online ISBN: 978-3-319-04813-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics