Skip to main content

K-Sense: Towards a Kinematic Approach for Measuring Human Energy Expenditure

  • Conference paper
Wireless Sensor Networks (EWSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8354))

Included in the following conference series:

Abstract

Accurate energy expenditure monitoring will be an essential part of medical diagnosis in the future, enabling individually-tailored just-in-time interventions. However, there are currently no real-time monitors that are practical for continuous daily use. In this paper, we introduce the K-Sense energy expenditure monitor that uses inertial measurement units (IMUs) mounted to an individual’s wrist and ankle with elastic bands to determine angular velocity and position. The system utilizes kinematics to determine the amount of energy required for each limb to achieve its current movement. Our empirical evaluation includes over 3,000,000 individual data samples across 12 individuals and the results indicate that the system can estimate total energy expenditure with a 92 percent accuracy on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Actigraph, http://www.actigraphcorp.com/ (accessed September 4, 2013)

  2. Actilife 6 official site, http://www.actigraphcorp.com/products/actilife-6/ (accessed September 4, 2013)

  3. Activity monitor, http://research.nokia.com/page/529 (accessed September 4, 2013)

  4. Fitbit official site, http://www.fitbit.com/ (accessed September 4, 2013)

  5. Fones,energy consumption and body weight, http://www.bwl.admin.ch/themen/00509/00528/index.html?lang=en [Federal Department of Economic Affairs and Education and Research EAER] (accessed September 4, 2013)

  6. Nike+, http://nikeplus.nike.com/nikeplus/ (accessed September 4, 2013)

  7. Sports tracker, http://www.sports-tracker.com/ (accessed September 4, 2013)

  8. Andre, D., Pelletier, R., Farringdon, J., Safi, S., Talbott, W., Stone, R., Vyas, N., Trimble, J., Wolf, D., Vishnubhatla, S., Boehmke, S., Teller, J.S.A.: The development of the sensewear armband, a revolutionary energy assessment device to assess physical activity and lifestyle. Bodymedia (2006)

    Google Scholar 

  9. Bradfield, R.B., Huntzicker, P.B., Fruehan, G.J.: Simultaneous comparison of respirometer and heart-rate telemetry techniques as measures of human energy expenditure. American Journal of Clinical Nutrition 22(6), 696–700 (1969)

    Google Scholar 

  10. Brage, S., Brage, N.: Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. Journal of Applied Phyliology 96, 343–351 (2004)

    Google Scholar 

  11. Choi, J.E., Lee, J., Hwang, H., Kim, J.P., Park, J.C., Shin, K.: Estimation of activity energy expenditure: Accelerometer approach. In: IEEE-EMBS Engineering in Medicine and Biology Society, pp. 3830–3833 (2005)

    Google Scholar 

  12. Church, T.S., Earnest, C.P., Skinner, J.S., Blair, S.N.: Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: A randomized controlled trial. JAMA 297(19), 2081–2091 (2007)

    Article  Google Scholar 

  13. Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.A.: Activity sensing in the wild: A field trial of ubifit garden. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 1797–1806. ACM (2008)

    Google Scholar 

  14. Crouter, S.E., Clowers, K.G., Bassett, J.D.R.: A novel method for using accelerometer data to predict energy expenditure. Journal of Applied Physiology 100, 1324–1331 (2006)

    Article  Google Scholar 

  15. Schoeller, D.A., Taylor, P.B.: Precision of the doubly labelled water method using the two-point calculation. Human Nutrition: Clinical Nutrition 41(3), 215–223 (1987)

    Google Scholar 

  16. Dannecker, K.L., Sazonova, N.A., Melanson, E.L., Sazonov, E.S., Browning, R.C.: A comparison of energy expenditure estimation of several physical activity monitors. Medicine and Science in Sports and Exercise (2013)

    Google Scholar 

  17. de Groot, G., Schreurs, A.W., Schenau, G.V.I.: A portable lightweight douglas bag instrument for use during various types of exercise. International Journal of Sports Medicine 4(2), 132–134 (1983)

    Article  Google Scholar 

  18. de Leva, P.: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. Journal of Biomechanics 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  19. Finkelstein, E.A., Trogdon, J.G., Cohen, J.W., Dietz, W.: Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Affairs 28(5), w822–w831 (2009)

    Google Scholar 

  20. National Center for Health Statistics. Health, united states, 2012: With special feature on emergency care (2013)

    Google Scholar 

  21. Hollanda, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Communications in Statistics - Theory and Methods 6(9), 813–827 (1977)

    Article  Google Scholar 

  22. Jensen, K., Jorgensen, S., Johansen, L.: A metabolic cart for measurement of oxygen uptake during human exercise using inspiratory flow rate. European Journal of Applied Physiology (2002)

    Google Scholar 

  23. Johannsen, D.L., Calabro, M.A., Stewart, J., Franke, W., Rood, J.C., Welk, G.J.: Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Medicine and Science in Sports and Exercise 42(11), 2134–2140 (2010)

    Article  Google Scholar 

  24. Madgwick, S.: An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Technical report Department of Mechanical Engineering University of Bristol (April 2010)

    Google Scholar 

  25. McDowd, K.B.: Life is a sport:how the nike+ fuelband gets it right and represents the evolution of design for wearables

    Google Scholar 

  26. Plagenhoef, S., Evans, F.G., Abdelnour, T.: Anatomical data for analyzing human motion. Research Quarterly for Exercise and Sport 54, 169–178 (1983)

    Article  Google Scholar 

  27. Plasqui, G., Joosen, A.M., Kester, A.D., Goris, A.H., Westerterp, K.R.: Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obesity Research 13(8) (August 2005)

    Google Scholar 

  28. Rennie, K., Rowsell, T., Jebb, S.A., Holburn, D., Wareham, N.J.: A combined heart rate and movement sensor: proof of concept and preliminary testing study. European Journal of Clinical Nutrition 54, 409–414 (2000)

    Article  Google Scholar 

  29. Seliger, V., Dolejs, L., Karas, V.: A dynamometric comparison of maximum eccentric, concentric, and isometric contractions using emg and energy expenditure measurements. European Journal of Applied Physiology and Occupational Physiology 1980 45(23), 235–244 (1980)

    Article  Google Scholar 

  30. Shahabdeen, J.A., Baxi, A., Nachman, L.: Ambulatory energy expenditure estimation:a machine learning approach. In: Proceedings of the Twenty-Second Innovative Applications of Artificial Intelligence Conference (2010)

    Google Scholar 

  31. Snellen, J.: An improved estimation of mean body temperature using combined direct calorimetry and thermometry. European Journal of Applied Physiology 2000 82(3), 188–196 (2000)

    Google Scholar 

  32. Sun, M., Reed, G.W., Hill, J.O.: Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure. Journal of Applied Physiology 76(6) (June 1994)

    Google Scholar 

  33. Watt, A., Watt, M.: Advanced Animation and Rendering Techniques: Theory and Practice. Addison-Wesley (1992)

    Google Scholar 

  34. Webster, J., Welsh, G., Pacy, P., Garrow, J.: Description of a human direct calorimeter, with a note on the energy cost of clerical work. British Journal of Nutrition 1986 55(1), 1–6 (1986)

    Google Scholar 

  35. Wyss, T., Mäder, U.: Energy expenditure estimation during daily military routine with body-fixed sensors. Military Medicine 176(5), 494 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zaman, K.I., White, A., Yli-Piipari, S.R., Hnat, T.W. (2014). K-Sense: Towards a Kinematic Approach for Measuring Human Energy Expenditure. In: Krishnamachari, B., Murphy, A.L., Trigoni, N. (eds) Wireless Sensor Networks. EWSN 2014. Lecture Notes in Computer Science, vol 8354. Springer, Cham. https://doi.org/10.1007/978-3-319-04651-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04651-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04650-1

  • Online ISBN: 978-3-319-04651-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics