Skip to main content

Porous Silicon Phononic Crystals

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon

Abstract

In this updated review, research on phononic crystals in porous silicon is first put in context of the more general interest in controlling wave behavior in periodic media in both photonic and phononic crystals. The condition for a stop band for acoustic waves is derived by analogy with the Bragg condition with optical multilayers and then also obtained from the Rytov theory of layered acoustic media. The modeled acoustic bandgap in porous silicon is then defined and examined with the parameters used to model acoustic velocities in the material. A historical overview of papers covering theory and experiments on acoustic bandgaps in porous silicon is then given with an emphasis on their hypersonic nature and phoxonic properties. Finally, the applications of acoustic distributed Bragg reflectors (ADBRs) with integrated transducers for high-performance bulk acoustic resonators (BAW) and possible applications for thermoelectric devices are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alaie S, Goettler DF, Su M, Leseman ZC, Reinke CM, El-Kady I (2015) Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nat Commun 6:7228

    Article  Google Scholar 

  • Aliev GN, Goller B, Kovalev D, Snow P (2010) Hypersonic acoustic mirrors and microcavities in porous silicon. Appl Phys Lett 96:124101

    Article  Google Scholar 

  • Aliev GN, Goller B, Snow PA, Heinrich H, Yuan B, Aigner R (2012a) Porous silicon bulk acoustic wave resonator with integrated transducer. Nanoscale Res Lett 7:378

    Article  Google Scholar 

  • Aliev GN, Goller B, Snow PA, Heinrich H, Yuan B, Menendez O, Aigner R (2012b) Porous silicon as an acoustic material for BAW. IEEE Int Ultrason Symp Proc. doi:10.1109/ULTSYM.2012.0553

    Google Scholar 

  • Aliev GN, Goller B (2014) Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation. J Appl Phys 116(9):094903

    Article  Google Scholar 

  • Aliev GN, Goller B (2015) Hypersonic phononic stopbands at small angles of wave incidence in porous silicon multilayers. J Phys D Appl Phys 48(32):325501

    Article  Google Scholar 

  • Anufriev R, Nomura M (2016) Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types. PhysRev B93:045410

    Google Scholar 

  • Anufriev R, Maire J, Nomura M (2016) Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures. Phys Rev B93:045111

    Google Scholar 

  • Björk G, Yamamoto Y, Heitman H (1995) Spontaneous emission control in semiconductor microcavities, 5: a Bragg mirror primer. In: Burstein E, Weisbuch C (eds) Confined electrons and photons: New physics and applications. NATO Advanced Study Institute, Erice. July 1993. Plenum, London, pp 481–487

    Google Scholar 

  • Colvard C, Merlin R, Klein MV, Gossard AC (1980) Observation of folded acoustic phonons in a semiconductor superlattice. Phys Rev Lett 45:298–301

    Article  Google Scholar 

  • Esfarjani K, Chen G, Stokes HT (2011) Heat transport in silicon from first principle calculations. Phys Rev B 84:085204

    Article  Google Scholar 

  • Hopkins PE, Phinney LM, Rakich PT, Olsson RH III, El-Kady I (2011) Phonon considerations in the reduction of thermal conductivity in phononic crystals. Appl Phys A Mater Sci Process 103:575–579

    Article  Google Scholar 

  • Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Jusserand B, Cardona M (1989) Raman spectroscopy of vibrations in superlattices. In: Cardaona M, Güntherod G (eds) Light scattering in solids V. Springer, Berlin, pp 49–152

    Chapter  Google Scholar 

  • Kiuchi A, Gelloz B, Kojima A, Koshida N (2005) Possible operation of periodically layered nanocrystalline porous silicon as an acoustic band crystal device. Mater Res Symp Proc 832:F3.7.1–F3.7.6

    Google Scholar 

  • Kushwaha MS (1996) Classical band structure of periodic elastic composites. Int J Mod Phys 10(9):977–1094

    Article  Google Scholar 

  • Lakin KM, Kline GR, McCarron KT (1995) Development of miniature filters for wireless applications. IEEE Trans Microwave Theory Tech 43(12):2933–2939

    Article  Google Scholar 

  • Lazcano Z, Arriaga J, Aliev GN (2014) Experimental and theoretical demonstration of acoustic Bloch oscillations in porous silicon structures. J Appl Phys 115(15):154505

    Article  Google Scholar 

  • Lazcano Z, Arriaga J (2014) Acoustic Wannier-Stark ladders and Bloch oscillations in porous silicon structures. Appl Phys Lett 105(23):231901

    Article  Google Scholar 

  • Lee J, Lee W, Wehmeyer G, Dhuey S, Olynick DL, Cabrini S, Dames C, Urban JL, Yang P (2017) Investigation of phonon coherence and backscattering using silicon nanomeshes. Nat Commun 8:14054

    Article  Google Scholar 

  • Lorenzo E, Oton CJ, Capuj NE, Ghulinyan M, Navarro-Urrios D, Gaburro Z, Pavesi L (2005) Porous silicon-based rugate filters. Appl Opt 44(26):5415–5421

    Article  Google Scholar 

  • Ma J, Prajuli BR, Ghossoub MG, Mihi A, Sadhu J, Braun PV (2013) Coherent phonon-grain boundary scattering in silicon inverse opals. Nano Lett 13:618–624

    Article  Google Scholar 

  • Manzanares-Martinez J, Castro-Garay P, Manzanares-Martinez B, Moctezuma-Enriquez D, Rodriguez-Viveros YJ, Ham-Rodriguez CI (2015) Phoxonic structure with photonic and phononic stop bands at the same reduced frequency. In: Lakhtakia A, Mackay TG, Suzuki, M (eds.) Nanostructured thin films VIII, Proceedings of SPIE: 9558(95580Q)

    Google Scholar 

  • Marconnet AM, Kodama T, Asheghi M, Goodson KE (2012) Phonon conduction in periodically porous silicon nanobridges. Nanoscale Microscale Thermophys Eng 16(4):199–219

    Article  Google Scholar 

  • Marconnet AM, Asheghi M, Goodson KE (2013) From the Casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. J Heat Transf 135:061601

    Article  Google Scholar 

  • Mitsas CL, Siapkas DI (1995) Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces and finite substrates. Appl Opt 34(10):1678–1683

    Article  Google Scholar 

  • Mizuno S, Tamura S (1992) Theory of acoustic-phonon transmission in finite-size superlattice systems. Phys Rev B 45(2):734–741

    Article  Google Scholar 

  • Moctezuma-Enriquez D, Rodriguez-Viveros YJ, Manzanares-Martinez MB, Castro-Garay P, Urrutia-Banuelos E, Manzanares-Martinez J (2011) Existence of a giant hypersonic elastic mirror in porous silicon superlattices. Appl Phys Lett 99:171901

    Article  Google Scholar 

  • Newell WE (1965) Face-mounted piezoelectric resonators. Proc IEEE 53:361–366

    Google Scholar 

  • Parsons LC, Andrews GT (2009) Observation of hypersonic phononic crystal effects in porous silicon superlattices. Appl Phys Lett 95:241909

    Article  Google Scholar 

  • Parsons LC, Andrews GT (2012) Brillouin scattering from porous silicon-based optical Bragg mirrors. J Appl Phys 111:123521

    Article  Google Scholar 

  • Parsons LC, Andrews GT (2014) Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance. J Appl Phys 116(3):033510

    Article  Google Scholar 

  • Reinhardt A, Snow PA (2007) Theoretical study of acoustic band-gap structures made of porous silicon. Phys Status Solidi A 204(5):1528–1535

    Article  Google Scholar 

  • Reinhardt A, Pastureaud T, Ballandas S, Laude V (2003) Scattering matrix method for modeling acoustic waves in piezoelectric, fluid, and metallic multilayers. J Appl Phys 94(10):6923–6931

    Article  Google Scholar 

  • Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935

    Article  Google Scholar 

  • Rytov SM (1956) Acoustical properties of a thinly laminated medium. Sov Phys Acoust 2:68–80

    Google Scholar 

  • Sadat-Saleh S, Benchabane S, Baida FI, Bernal M-P, Laude V (2009) Tailoring simultaneous photonic and phononic band gaps. J Appl Phys 106:074912

    Article  Google Scholar 

  • Satoh Y, Nishihara T, Yokoyama T, Ueda M, Miyashita T (2005) Development of piezoelectric thin film resonator and its impact on future wireless communication systems. Jpn J Appl Phys 44(5A):2883–2894

    Article  Google Scholar 

  • Sigalas MM, Economou EN (1992) Elastic and acoustic-wave band-structure. J Sound Vib 158(2):377–382

    Article  Google Scholar 

  • Sigalas M, Kushwaha MS, Economou EN, Kafesaki M, Psarobas IE, Steurer W (2005) Classical vibrational modes in phononic lattices: theory and experiment. Z Krisstallogr 220:765–809

    Google Scholar 

  • Thomas LA (2011) Porous silicon multilayers for gigahertz bulk acoustic wave devices. PhD thesis, University of Bath

    Google Scholar 

  • Thomas L, Aliev GN, Snow PA (2010) Hypersonic rugate filters based on porous silicon. Appl Phys Lett 97:173503

    Article  Google Scholar 

  • Zen N, Puurtinen TA, Isotalo TJ, Chaudhuri S, Maasilta I (2014) Engineering thermal conductance using a two-dimensional phononic crystal. Nat Commun 5:3435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Snow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Snow, P. (2017). Porous Silicon Phononic Crystals. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_85-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_85-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Porous Silicon Phononic Crystals
    Published:
    06 February 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_85-2

  2. Original

    Porous Silicon Phononic Crystals
    Published:
    23 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_85-1